test_unclip.py 14.6 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
24
from diffusers.utils import load_numpy, nightly, slow, torch_device
Will Berman's avatar
Will Berman committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer


torch.backends.cuda.matmul.allow_tf32 = False


class UnCLIPPipelineFastTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 12,
            "embedding_dim": self.text_embedder_hidden_size,
            "num_layers": 1,
        }

        model = PriorTransformer(**model_kwargs)
        return model

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
            "sample_size": 64,
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
            "sample_size": 128,
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    def test_unclip(self):
        device = "cpu"

        prior = self.dummy_prior
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        prior_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample_range=5.0,
        )

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        pipe = UnCLIPPipeline(
            prior=prior,
            decoder=decoder,
            text_proj=text_proj,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            super_res_first=super_res_first,
            super_res_last=super_res_last,
            prior_scheduler=prior_scheduler,
            decoder_scheduler=decoder_scheduler,
            super_res_scheduler=super_res_scheduler,
        )
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        prompt = "horse"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe(
            [prompt],
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            output_type="np",
        )
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = pipe(
            [prompt],
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)

        expected_slice = np.array(
            [
236
237
238
239
240
                0.0011,
                0.0002,
                0.9962,
                0.9940,
                0.0002,
Will Berman's avatar
Will Berman committed
241
242
                0.9997,
                0.0003,
243
244
                0.9987,
                0.9989,
Will Berman's avatar
Will Berman committed
245
246
247
248
249
250
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    def test_unclip_passed_text_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

        prior = self.dummy_prior
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        prior_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample_range=5.0,
        )

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        pipe = UnCLIPPipeline(
            prior=prior,
            decoder=decoder,
            text_proj=text_proj,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            super_res_first=super_res_first,
            super_res_last=super_res_last,
            prior_scheduler=prior_scheduler,
            decoder_scheduler=decoder_scheduler,
            super_res_scheduler=super_res_scheduler,
        )
        pipe = pipe.to(device)

        generator = torch.Generator(device=device).manual_seed(0)
        dtype = prior.dtype
        batch_size = 1

        shape = (batch_size, prior.config.embedding_dim)
        prior_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )
        shape = (batch_size, decoder.in_channels, decoder.sample_size, decoder.sample_size)
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
            super_res_first.in_channels // 2,
            super_res_first.sample_size,
            super_res_first.sample_size,
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        pipe.set_progress_bar_config(disable=None)

        prompt = "this is a prompt example"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe(
            [prompt],
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            output_type="np",
        )
        image = output.images

        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_model_output = text_encoder(text_inputs.input_ids)
        text_attention_mask = text_inputs.attention_mask

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_text = pipe(
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            text_model_output=text_model_output,
            text_attention_mask=text_attention_mask,
            output_type="np",
        )[0]

        # make sure passing text embeddings manually is identical
        assert np.abs(image - image_from_text).max() < 1e-4

Will Berman's avatar
Will Berman committed
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
@nightly
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo_cpu_fp32(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_horse_cpu.npy"
        )

        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha")
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        output = pipeline(
            "horse",
            num_images_per_prompt=1,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).max() < 1e-1


Will Berman's avatar
Will Berman committed
397
398
399
400
401
402
403
404
405
406
407
408
@slow
@require_torch_gpu
class UnCLIPPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
409
            "/unclip/karlo_v1_alpha_horse_fp16.npy"
Will Berman's avatar
Will Berman committed
410
411
        )

412
        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
413
414
415
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

416
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
417
418
419
420
421
422
        output = pipeline(
            "horse",
            generator=generator,
            output_type="np",
        )

423
424
425
426
427
428
        image = np.asarray(pipeline.numpy_to_pil(output.images)[0], dtype=np.float32)
        expected_image = np.asarray(pipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)

        # Karlo is extremely likely to strongly deviate depending on which hardware is used
        # Here we just check that the image doesn't deviate more than 10 pixels from the reference image on average
        avg_diff = np.abs(image - expected_image).mean()
Will Berman's avatar
Will Berman committed
429

430
        assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average"
Will Berman's avatar
Will Berman committed
431
        assert image.shape == (256, 256, 3)
432

Will Berman's avatar
Will Berman committed
433
    def test_unclip_pipeline_with_sequential_cpu_offloading(self):
434
435
436
437
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

438
        pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        generator = torch.Generator(device=torch_device).manual_seed(0)
        _ = pipe(
            "horse",
            num_images_per_prompt=1,
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
456
457
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9