modeling_ddim.py 5.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import tqdm
from diffusers import DiffusionPipeline

22
23
24
25
26
27

class DDIM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

Patrick von Platen's avatar
Patrick von Platen committed
28
    def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
Patrick von Platen's avatar
Patrick von Platen committed
29
        # eta corresponds to η in paper and should be between [0, 1]
30
31
32
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
33
34
        num_trained_timesteps = self.noise_scheduler.num_timesteps
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
35

36
        self.unet.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
37
38

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
        image = self.noise_scheduler.sample_noise(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            device=torch_device,
            generator=generator,
        )
Patrick von Platen's avatar
Patrick von Platen committed
44

Patrick von Platen's avatar
Patrick von Platen committed
45
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
52
53
54
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
55
        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
56
57
            # 1. predict noise residual
            with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
58
                residual = self.unet(image, inference_step_times[t])
Patrick von Platen's avatar
Patrick von Platen committed
59

Patrick von Platen's avatar
Patrick von Platen committed
60
61
            # 2. predict previous mean of image x_t-1
            pred_prev_image = self.noise_scheduler.predict_prev_image_step(residual, image, t, num_inference_steps, eta)
Patrick von Platen's avatar
Patrick von Platen committed
62

Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
67
            # 3. optionally sample variance
            variance = 0
            if eta > 0:
                noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
                variance = self.noise_scheduler.get_variance(t).sqrt() * eta * noise
Patrick von Platen's avatar
Patrick von Platen committed
68

Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
73
74
75
76
77
78
79
80
81
            # 4. set current image to prev_image: x_t -> x_t-1
            image = pred_prev_image + variance

            # 2. get actual t and t-1
#            train_step = inference_step_times[t]
#            prev_train_step = inference_step_times[t - 1] if t > 0 else -1
#
            # 3. compute alphas, betas
#            alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step)
#            alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step)
#            beta_prod_t = 1 - alpha_prod_t
#            beta_prod_t_prev = 1 - alpha_prod_t_prev
#
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
            # 4. Compute predicted previous image from predicted noise
            # First: compute predicted original image from predicted noise also called
            # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
85
86
#            pred_original_image = (image - beta_prod_t.sqrt() * pred_noise_t) / alpha_prod_t.sqrt()
#
Patrick von Platen's avatar
Patrick von Platen committed
87
            # Second: Clip "predicted x_0"
Patrick von Platen's avatar
Patrick von Platen committed
88
89
#            pred_original_image = torch.clamp(pred_original_image, -1, 1)
#
Patrick von Platen's avatar
Patrick von Platen committed
90
91
            # Third: Compute variance: "sigma_t(η)" -> see formula (16)
            # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
#            std_dev_t = (beta_prod_t_prev / beta_prod_t).sqrt() * (1 - alpha_prod_t / alpha_prod_t_prev).sqrt()
#            std_dev_t = eta * std_dev_t
#
Patrick von Platen's avatar
Patrick von Platen committed
95
            # Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
96
97
#            pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t
#
Patrick von Platen's avatar
Patrick von Platen committed
98
            # Fifth: Compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
99
100
#            pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction
#
Patrick von Platen's avatar
Patrick von Platen committed
101
102
            # 5. Sample x_t-1 image optionally if η > 0.0 by adding noise to pred_prev_image
            # Note: eta = 1.0 essentially corresponds to DDPM
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
#            if eta > 0.0:
#                noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
#                prev_image = pred_prev_image + std_dev_t * noise
#            else:
#                prev_image = pred_prev_image
#
Patrick von Platen's avatar
Patrick von Platen committed
109
            # 6. Set current image to prev_image: x_t -> x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
110
#            image = prev_image
Patrick von Platen's avatar
Patrick von Platen committed
111
112

        return image