modeling_ddim.py 3.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


from diffusers import DiffusionPipeline
import tqdm
import torch


def compute_alpha(beta, t):
    beta = torch.cat([torch.zeros(1).to(beta.device), beta], dim=0)
    a = (1 - beta).cumprod(dim=0).index_select(0, t + 1).view(-1, 1, 1, 1)
    return a


class DDIM(DiffusionPipeline):

    def __init__(self, unet, noise_scheduler):
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

Patrick von Platen's avatar
Patrick von Platen committed
34
    def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
Patrick von Platen's avatar
Patrick von Platen committed
35
        # eta is η in paper
36
37
38
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
39
40
        num_trained_timesteps = self.noise_scheduler.num_timesteps
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
41

42
        self.unet.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        image = self.noise_scheduler.sample_noise((batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator)

        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
            # get actual t and t-1
            train_step = inference_step_times[t]
            prev_train_step = inference_step_times[t - 1] if t > 0 else - 1

            # compute alphas
            alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step)
            alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step)
            alpha_prod_t_rsqrt = 1 / alpha_prod_t.sqrt()
            alpha_prod_t_prev_rsqrt = 1 / alpha_prod_t_prev.sqrt()
            beta_prod_t_sqrt = (1 - alpha_prod_t).sqrt()
            beta_prod_t_prev_sqrt = (1 - alpha_prod_t_prev).sqrt()

            # compute relevant coefficients
            coeff_1 = (alpha_prod_t_prev - alpha_prod_t).sqrt() * alpha_prod_t_prev_rsqrt * beta_prod_t_prev_sqrt / beta_prod_t_sqrt * eta
            coeff_2 = ((1 - alpha_prod_t_prev) - coeff_1 ** 2).sqrt()

            with torch.no_grad():
                noise_residual = self.unet(image, train_step)

            print(train_step)

            pred_mean = (image - noise_residual * beta_prod_t_sqrt) * alpha_prod_t_rsqrt
            xt_next = alpha_prod_t_prev.sqrt() * pred_mean + coeff_1 * torch.randn_like(image) + coeff_2 * noise_residual
#            xt_next = 1 / alpha_prod_t_rsqrt * pred_mean + coeff_1 * torch.randn_like(image) + coeff_2 * noise_residual
            # eta
            image = xt_next

        return image