"profiler/vscode:/vscode.git/clone" did not exist on "8df7bd01c478b2d6f7cd06911f3b6e3bdf8f2522"
test_lora_layers_peft.py 91.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import copy
16
import importlib
17
18
import os
import tempfile
19
import time
20
21
22
23
24
25
import unittest

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
26
from huggingface_hub import hf_hub_download
27
from huggingface_hub.repocard import RepoCard
28
from packaging import version
29
30
31
32
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
33
    AutoPipelineForImage2Image,
34
    ControlNetModel,
35
    DDIMScheduler,
36
    DiffusionPipeline,
37
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
    StableDiffusionPipeline,
40
    StableDiffusionXLControlNetPipeline,
41
42
43
44
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers
45
from diffusers.models.attention_processor import LoRAAttnProcessor, LoRAAttnProcessor2_0
46
47
48
49
50
from diffusers.utils.import_utils import is_accelerate_available, is_peft_available
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_image,
    nightly,
Dhruv Nair's avatar
Dhruv Nair committed
51
    numpy_cosine_similarity_distance,
52
53
54
55
56
57
    require_peft_backend,
    require_torch_gpu,
    slow,
    torch_device,
)

58

59
60
if is_accelerate_available():
    from accelerate.utils import release_memory
61
62
63
64
65
66
67

if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


68
69
70
71
72
73
74
75
76
77
78
79
def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


@require_peft_backend
class PeftLoraLoaderMixinTests:
    torch_device = "cuda" if torch.cuda.is_available() else "cpu"
    pipeline_class = None
    scheduler_cls = None
    scheduler_kwargs = None
    has_two_text_encoders = False
    unet_kwargs = None
    vae_kwargs = None

Patrick von Platen's avatar
Patrick von Platen committed
112
113
    def get_dummy_components(self, scheduler_cls=None):
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler
114
        rank = 4
Patrick von Platen's avatar
Patrick von Platen committed
115

116
117
        torch.manual_seed(0)
        unet = UNet2DConditionModel(**self.unet_kwargs)
118

Patrick von Platen's avatar
Patrick von Platen committed
119
        scheduler = scheduler_cls(**self.scheduler_kwargs)
120

121
122
        torch.manual_seed(0)
        vae = AutoencoderKL(**self.vae_kwargs)
123

124
125
126
127
128
129
130
131
        text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
        tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        if self.has_two_text_encoders:
            text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
            tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        text_lora_config = LoraConfig(
132
133
134
135
            r=rank,
            lora_alpha=rank,
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
            init_lora_weights=False,
136
137
        )

138
        unet_lora_config = LoraConfig(
139
            r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
140
141
        )

142
143
144
145
146
147
148
149
150
151
152
        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)

        if self.has_two_text_encoders:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "text_encoder_2": text_encoder_2,
                "tokenizer_2": tokenizer_2,
153
154
                "image_encoder": None,
                "feature_extractor": None,
155
156
157
158
159
160
161
162
163
164
            }
        else:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "safety_checker": None,
                "feature_extractor": None,
165
                "image_encoder": None,
166
167
168
169
170
            }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
171
        return pipeline_components, lora_components, text_lora_config, unet_lora_config
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def check_if_lora_correctly_set(self, model) -> bool:
        """
        Checks if the LoRA layers are correctly set with peft
        """
        for module in model.modules():
            if isinstance(module, BaseTunerLayer):
                return True
        return False

    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
220
221
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
222

Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
            _, _, inputs = self.get_dummy_inputs()
            output_no_lora = pipe(**inputs).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
226
227
228
229
230
231

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
236
237
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
238

Patrick von Platen's avatar
Patrick von Platen committed
239
240
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
241

Patrick von Platen's avatar
Patrick von Platen committed
242
            pipe.text_encoder.add_adapter(text_lora_config)
243
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
244
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
245
246
            )

Patrick von Platen's avatar
Patrick von Platen committed
247
248
249
250
251
252
253
254
255
256
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
257
258
259
260
261
262

    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
263
264
265
266
267
268
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
269

Patrick von Platen's avatar
Patrick von Platen committed
270
271
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
272

Patrick von Platen's avatar
Patrick von Platen committed
273
            pipe.text_encoder.add_adapter(text_lora_config)
274
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
275
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
276
277
            )

Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
281
282
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
283

Patrick von Platen's avatar
Patrick von Platen committed
284
285
286
287
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
288

Patrick von Platen's avatar
Patrick von Platen committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
304
305
306
307
308
309

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
313
314
315
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
316

Patrick von Platen's avatar
Patrick von Platen committed
317
318
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
319

Patrick von Platen's avatar
Patrick von Platen committed
320
            pipe.text_encoder.add_adapter(text_lora_config)
321
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
322
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
323
324
            )

Patrick von Platen's avatar
Patrick von Platen committed
325
326
327
328
329
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
330

Patrick von Platen's avatar
Patrick von Platen committed
331
332
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
333
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
334
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
335
336
            )

Patrick von Platen's avatar
Patrick von Platen committed
337
338
339
340
341
342
343
344
345
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
346
347
348
349
350
351

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
352
353
354
355
356
357
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
358

Patrick von Platen's avatar
Patrick von Platen committed
359
360
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
361

Patrick von Platen's avatar
Patrick von Platen committed
362
            pipe.text_encoder.add_adapter(text_lora_config)
363
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
364
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
365
366
            )

Patrick von Platen's avatar
Patrick von Platen committed
367
368
369
370
371
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
372

Patrick von Platen's avatar
Patrick von Platen committed
373
374
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
375
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
376
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
377
378
            )

Patrick von Platen's avatar
Patrick von Platen committed
379
380
381
382
383
384
385
386
387
388
389
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
390
391
392
393
394

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Patrick von Platen's avatar
Patrick von Platen committed
395
396
397
398
399
400
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
401

Patrick von Platen's avatar
Patrick von Platen committed
402
403
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
404

Patrick von Platen's avatar
Patrick von Platen committed
405
            pipe.text_encoder.add_adapter(text_lora_config)
406
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
407
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
408
409
410
            )

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
411
412
413
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
414
415
                )

Patrick von Platen's avatar
Patrick von Platen committed
416
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
417

Patrick von Platen's avatar
Patrick von Platen committed
418
419
420
421
            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
422

Patrick von Platen's avatar
Patrick von Platen committed
423
424
425
426
427
428
429
430
431
432
433
434
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        safe_serialization=False,
                    )
435

Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
439
440
441
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
442
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
443
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
444
445
            )

Patrick von Platen's avatar
Patrick von Platen committed
446
447
448
449
450
451
452
453
454
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
455
456
457
458
459

    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Patrick von Platen's avatar
Patrick von Platen committed
460
461
462
463
464
465
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
466

Patrick von Platen's avatar
Patrick von Platen committed
467
468
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
469

Patrick von Platen's avatar
Patrick von Platen committed
470
            pipe.text_encoder.add_adapter(text_lora_config)
471
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
472
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
473
474
            )

Patrick von Platen's avatar
Patrick von Platen committed
475
476
477
478
479
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
480

Patrick von Platen's avatar
Patrick von Platen committed
481
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
482

Patrick von Platen's avatar
Patrick von Platen committed
483
484
            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)
485

Patrick von Platen's avatar
Patrick von Platen committed
486
487
                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(self.torch_device)
488
489

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
490
491
                self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
492
493
            )

Patrick von Platen's avatar
Patrick von Platen committed
494
495
496
497
498
499
500
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                    "Lora not correctly set in text encoder 2",
                )

            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images
501

Patrick von Platen's avatar
Patrick von Platen committed
502
503
504
505
            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
506

507
508
509
510
    def test_simple_inference_with_text_unet_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Patrick von Platen's avatar
Patrick von Platen committed
511
512
513
514
515
516
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
517

Patrick von Platen's avatar
Patrick von Platen committed
518
519
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
520

Patrick von Platen's avatar
Patrick von Platen committed
521
522
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
523
524

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
525
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
526
            )
Patrick von Platen's avatar
Patrick von Platen committed
527
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
528
529

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
533
534
                )

Patrick von Platen's avatar
Patrick von Platen committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                unet_state_dict = get_peft_model_state_dict(pipe.unet)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
568

Patrick von Platen's avatar
Patrick von Platen committed
569
570
571
572
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
573
574

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
575
576
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
577
            )
578

579
580
581
582
583
    def test_simple_inference_with_text_unet_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
600

Patrick von Platen's avatar
Patrick von Platen committed
601
602
603
604
605
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
606

Patrick von Platen's avatar
Patrick von Platen committed
607
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
608
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
609
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
610
611
            )

Patrick von Platen's avatar
Patrick von Platen committed
612
613
614
615
616
617
618
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
619

Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
624
625
626
            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
627

Patrick von Platen's avatar
Patrick von Platen committed
628
629
630
631
            self.assertTrue(
                pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                "The scaling parameter has not been correctly restored!",
            )
632

633
634
635
636
637
    def test_simple_inference_with_text_lora_unet_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Patrick von Platen's avatar
Patrick von Platen committed
638
639
640
641
642
643
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
644

Patrick von Platen's avatar
Patrick von Platen committed
645
646
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
647

Patrick von Platen's avatar
Patrick von Platen committed
648
649
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
650
651

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
652
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
653
            )
Patrick von Platen's avatar
Patrick von Platen committed
654
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
655

Patrick von Platen's avatar
Patrick von Platen committed
656
657
658
659
660
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
661

Patrick von Platen's avatar
Patrick von Platen committed
662
663
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
664
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
665
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
666
            )
Patrick von Platen's avatar
Patrick von Platen committed
667
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet")
668

Patrick von Platen's avatar
Patrick von Platen committed
669
670
671
672
673
674
675
676
677
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
678
679
680
681
682
683

    def test_simple_inference_with_text_unet_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
684
685
686
687
688
689
690
691
692
693
694
695
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
696
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
697
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
698
            )
Patrick von Platen's avatar
Patrick von Platen committed
699
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
700

Patrick von Platen's avatar
Patrick von Platen committed
701
702
703
704
705
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
706

Patrick von Platen's avatar
Patrick von Platen committed
707
708
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
709
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
710
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
711
            )
Patrick von Platen's avatar
Patrick von Platen committed
712
            self.assertFalse(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet")
713

Patrick von Platen's avatar
Patrick von Platen committed
714
715
716
717
718
719
720
721
722
723
724
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
725

726
727
728
729
730
    def test_simple_inference_with_text_unet_lora_unfused(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
731
732
733
734
735
736
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
737

Patrick von Platen's avatar
Patrick von Platen committed
738
739
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
740

741
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
742
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
743
            )
Patrick von Platen's avatar
Patrick von Platen committed
744
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
745

Patrick von Platen's avatar
Patrick von Platen committed
746
747
748
749
750
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
751

Patrick von Platen's avatar
Patrick von Platen committed
752
            pipe.fuse_lora()
753

Patrick von Platen's avatar
Patrick von Platen committed
754
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
755

Patrick von Platen's avatar
Patrick von Platen committed
756
            pipe.unfuse_lora()
757

Patrick von Platen's avatar
Patrick von Platen committed
758
759
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            # unloading should remove the LoRA layers
760
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
761
                self.check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers"
762
            )
Patrick von Platen's avatar
Patrick von Platen committed
763
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers")
764

Patrick von Platen's avatar
Patrick von Platen committed
765
766
767
768
769
770
771
772
773
774
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                )

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
                np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
775
776
777
778
779
780

    def test_simple_inference_with_text_unet_multi_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
781
782
783
784
785
786
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
787

Patrick von Platen's avatar
Patrick von Platen committed
788
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
789

Patrick von Platen's avatar
Patrick von Platen committed
790
791
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
792

Patrick von Platen's avatar
Patrick von Platen committed
793
794
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
795
796

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
797
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
798
            )
Patrick von Platen's avatar
Patrick von Platen committed
799
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
800

Patrick von Platen's avatar
Patrick von Platen committed
801
802
803
804
805
806
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
807

Patrick von Platen's avatar
Patrick von Platen committed
808
            pipe.set_adapters("adapter-1")
809

Patrick von Platen's avatar
Patrick von Platen committed
810
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
811

Patrick von Platen's avatar
Patrick von Platen committed
812
813
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
814

Patrick von Platen's avatar
Patrick von Platen committed
815
            pipe.set_adapters(["adapter-1", "adapter-2"])
816

Patrick von Platen's avatar
Patrick von Platen committed
817
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
818

Patrick von Platen's avatar
Patrick von Platen committed
819
820
821
822
823
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
824

Patrick von Platen's avatar
Patrick von Platen committed
825
826
827
828
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
829

Patrick von Platen's avatar
Patrick von Platen committed
830
831
832
833
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
834

Patrick von Platen's avatar
Patrick von Platen committed
835
            pipe.disable_lora()
836

Patrick von Platen's avatar
Patrick von Platen committed
837
838
839
840
841
842
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
843

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
    def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

934
935
936
937
938
    def test_simple_inference_with_text_unet_multi_adapter_weighted(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
939
940
941
942
943
944
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
945

Patrick von Platen's avatar
Patrick von Platen committed
946
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
947

Patrick von Platen's avatar
Patrick von Platen committed
948
949
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
950

Patrick von Platen's avatar
Patrick von Platen committed
951
952
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
953
954

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
955
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
956
            )
Patrick von Platen's avatar
Patrick von Platen committed
957
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
958

Patrick von Platen's avatar
Patrick von Platen committed
959
960
961
962
963
964
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
965

Patrick von Platen's avatar
Patrick von Platen committed
966
            pipe.set_adapters("adapter-1")
967

Patrick von Platen's avatar
Patrick von Platen committed
968
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
969

Patrick von Platen's avatar
Patrick von Platen committed
970
971
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
972

Patrick von Platen's avatar
Patrick von Platen committed
973
            pipe.set_adapters(["adapter-1", "adapter-2"])
974

Patrick von Platen's avatar
Patrick von Platen committed
975
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
976

Patrick von Platen's avatar
Patrick von Platen committed
977
978
979
980
981
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
982

Patrick von Platen's avatar
Patrick von Platen committed
983
984
985
986
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
987

Patrick von Platen's avatar
Patrick von Platen committed
988
989
990
991
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
992

Patrick von Platen's avatar
Patrick von Platen committed
993
994
            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images
995

Patrick von Platen's avatar
Patrick von Platen committed
996
997
998
999
            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )
1000

Patrick von Platen's avatar
Patrick von Platen committed
1001
            pipe.disable_lora()
1002

Patrick von Platen's avatar
Patrick von Platen committed
1003
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images
1004

Patrick von Platen's avatar
Patrick von Platen committed
1005
1006
1007
1008
            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
1009

Patrick von Platen's avatar
Patrick von Platen committed
1010
1011
1012
1013
1014
1015
1016
    def test_lora_fuse_nan(self):
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1017

Patrick von Platen's avatar
Patrick von Platen committed
1018
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1019

Patrick von Platen's avatar
Patrick von Platen committed
1020
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1021

Patrick von Platen's avatar
Patrick von Platen committed
1022
1023
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
1024
            )
Patrick von Platen's avatar
Patrick von Platen committed
1025
1026
1027
1028
1029
1030
1031
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
                pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float(
                    "inf"
                )
1032

Patrick von Platen's avatar
Patrick von Platen committed
1033
1034
1035
            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
                pipe.fuse_lora(safe_fusing=True)
1036

Patrick von Platen's avatar
Patrick von Platen committed
1037
1038
            # without we should not see an error, but every image will be black
            pipe.fuse_lora(safe_fusing=False)
1039

Patrick von Platen's avatar
Patrick von Platen committed
1040
            out = pipe("test", num_inference_steps=2, output_type="np").images
1041

Patrick von Platen's avatar
Patrick von Platen committed
1042
            self.assertTrue(np.isnan(out).all())
1043
1044
1045
1046
1047
1048

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1049
1050
1051
1052
1053
1054
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1055

Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1058

Patrick von Platen's avatar
Patrick von Platen committed
1059
1060
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])
1061

Patrick von Platen's avatar
Patrick von Platen committed
1062
1063
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1064

Patrick von Platen's avatar
Patrick von Platen committed
1065
1066
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])
1067

Patrick von Platen's avatar
Patrick von Platen committed
1068
1069
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])
1070
1071
1072
1073
1074
1075

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1076
1077
1078
1079
1080
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
1081

Patrick von Platen's avatar
Patrick von Platen committed
1082
1083
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1084

Patrick von Platen's avatar
Patrick von Platen committed
1085
1086
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]})
1087

Patrick von Platen's avatar
Patrick von Platen committed
1088
1089
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1090

Patrick von Platen's avatar
Patrick von Platen committed
1091
1092
1093
1094
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(
                adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]}
            )
1095

Patrick von Platen's avatar
Patrick von Platen committed
1096
1097
1098
1099
1100
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1101

Patrick von Platen's avatar
Patrick von Platen committed
1102
1103
1104
1105
1106
            pipe.unet.add_adapter(unet_lora_config, "adapter-3")
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1107
1108
1109
1110
1111
1112
1113

    @unittest.skip("This is failing for now - need to investigate")
    def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
1114
1115
1116
1117
1118
1119
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1120

Patrick von Platen's avatar
Patrick von Platen committed
1121
1122
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
1123
1124

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
1125
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
1126
            )
Patrick von Platen's avatar
Patrick von Platen committed
1127
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
1128

Patrick von Platen's avatar
Patrick von Platen committed
1129
1130
1131
1132
1133
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
1134

Patrick von Platen's avatar
Patrick von Platen committed
1135
1136
1137
1138
1139
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

            if self.has_two_text_encoders:
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)
1140

Patrick von Platen's avatar
Patrick von Platen committed
1141
1142
            # Just makes sure it works..
            _ = pipe(**inputs, generator=torch.manual_seed(0)).images
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348


class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    pipeline_class = StableDiffusionPipeline
    scheduler_cls = DDIMScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "clip_sample": False,
        "set_alpha_to_one": False,
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "cross_attention_dim": 32,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
    }

    @slow
    @require_torch_gpu
    def test_integration_move_lora_cpu(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, adapter_name="adapter-1")
        pipe.load_lora_weights(lora_id, adapter_name="adapter-2")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in text encoder",
        )

        # We will offload the first adapter in CPU and check if the offloading
        # has been performed correctly
        pipe.set_lora_device(["adapter-1"], "cpu")

        for name, module in pipe.unet.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        for name, module in pipe.text_encoder.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1"], 0)

        for n, m in pipe.unet.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1", "adapter-2"], "cuda")

        for n, m in pipe.unet.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

    @slow
    @require_torch_gpu
    def test_integration_logits_with_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder 2",
        )

        prompt = "a red sks dog"

        images = pipe(
            prompt=prompt,
            num_inference_steps=15,
            cross_attention_kwargs={"scale": 0.5},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @slow
    @require_torch_gpu
    def test_integration_logits_no_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        prompt = "a red sks dog"

        images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images

        expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @nightly
    @require_torch_gpu
    def test_integration_logits_multi_adapter(self):
        path = "stabilityai/stable-diffusion-xl-base-1.0"
        lora_id = "CiroN2022/toy-face"

        pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in Unet",
        )

        prompt = "toy_face of a hacker with a hoodie"

        lora_scale = 0.9

        images = pipe(
            prompt=prompt,
            num_inference_steps=30,
            generator=torch.manual_seed(0),
            cross_attention_kwargs={"scale": lora_scale},
            output_type="np",
        ).images
        expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539])

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipe.set_adapters("pixel")

        prompt = "pixel art, a hacker with a hoodie, simple, flat colors"
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        expected_slice_scale = np.array(
            [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889]
        )
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # multi-adapter inference
        pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": 1.0},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1349
        expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909])
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # Lora disabled
        pipe.disable_lora()
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1363
        expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487])
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))


class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    has_two_text_encoders = True
    pipeline_class = StableDiffusionXLPipeline
    scheduler_cls = EulerDiscreteScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "timestep_spacing": "leading",
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "attention_head_dim": (2, 4),
        "use_linear_projection": True,
        "addition_embed_type": "text_time",
        "addition_time_embed_dim": 8,
        "transformer_layers_per_block": (1, 2),
        "projection_class_embeddings_input_dim": 80,  # 6 * 8 + 32
        "cross_attention_dim": 64,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
        "sample_size": 128,
    }
1403
1404
1405
1406


@slow
@require_torch_gpu
1407
class LoraIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
    pipeline_class = StableDiffusionPipeline
    scheduler_cls = DDIMScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "clip_sample": False,
        "set_alpha_to_one": False,
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "cross_attention_dim": 32,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
    }

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    def tearDown(self):
        import gc

        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    def test_dreambooth_old_format(self):
        generator = torch.Generator("cpu").manual_seed(0)

        lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe(
            "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_dreambooth_text_encoder_new_format(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/lora-trained"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_a1111(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_lycoris(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16"
        ).to(torch_device)
        lora_model_id = "hf-internal-testing/edgLycorisMugler-light"
        lora_filename = "edgLycorisMugler-light.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_model_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_sequential_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_kohya_sd_v15_with_higher_dimensions(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/urushisato-lora"
        lora_filename = "urushisato_v15.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_vanilla_funetuning(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_unload_kohya_lora(self):
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
        release_memory(pipe)

    def test_load_unload_load_kohya_lora(self):
        # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
        # without introducing any side-effects. Even though the test uses a Kohya-style
        # LoRA, the underlying adapter handling mechanism is format-agnostic.
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))

        # make sure we can load a LoRA again after unloading and they don't have
        # any undesired effects.
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images_again = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
        release_memory(pipe)


@slow
@require_torch_gpu
1689
class LoraSDXLIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
    has_two_text_encoders = True
    pipeline_class = StableDiffusionXLPipeline
    scheduler_cls = EulerDiscreteScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "timestep_spacing": "leading",
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "attention_head_dim": (2, 4),
        "use_linear_projection": True,
        "addition_embed_type": "text_time",
        "addition_time_embed_dim": 8,
        "transformer_layers_per_block": (1, 2),
        "projection_class_embeddings_input_dim": 80,  # 6 * 8 + 32
        "cross_attention_dim": 64,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
        "sample_size": 128,
    }

1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
    def tearDown(self):
        import gc

        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    def test_sdxl_0_9_lora_one(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
        lora_filename = "daiton-xl-lora-test.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_two(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
        lora_filename = "saijo.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_three(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
        lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])

        self.assertTrue(np.allclose(images, expected, atol=5e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora(self):
Dhruv Nair's avatar
Dhruv Nair committed
1791
        generator = torch.Generator("cpu").manual_seed(0)
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

Patrick von Platen's avatar
Patrick von Platen committed
1809
1810
1811
1812
1813
    def test_sdxl_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()

Dhruv Nair's avatar
Dhruv Nair committed
1814
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

        lora_model_id = "latent-consistency/lcm-lora-sdxl"

        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1831
1832
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

Dhruv Nair's avatar
Dhruv Nair committed
1843
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1859
1860
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png"
        )

Dhruv Nair's avatar
Dhruv Nair committed
1875
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "snowy mountain",
            generator=generator,
            image=init_image,
            strength=0.5,
            num_inference_steps=4,
            guidance_scale=0.5,
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1896
1897
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1898
1899
1900
1901
1902

        pipe.unload_lora_weights()

        release_memory(pipe)

1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
    def test_sdxl_1_0_lora_fusion(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        pipe.fuse_lora()
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()

        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        # This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion(self):
Dhruv Nair's avatar
Dhruv Nair committed
1930
        generator = torch.Generator("cpu").manual_seed(0)
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        pipe.enable_model_cpu_offload()

        images = pipe(
Dhruv Nair's avatar
Dhruv Nair committed
1941
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
1942
        ).images
Dhruv Nair's avatar
Dhruv Nair committed
1943
        images_with_fusion = images.flatten()
1944
1945

        pipe.unfuse_lora()
Dhruv Nair's avatar
Dhruv Nair committed
1946
        generator = torch.Generator("cpu").manual_seed(0)
1947
        images = pipe(
Dhruv Nair's avatar
Dhruv Nair committed
1948
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
1949
        ).images
Dhruv Nair's avatar
Dhruv Nair committed
1950
        images_without_fusion = images.flatten()
1951

Dhruv Nair's avatar
Dhruv Nair committed
1952
1953
1954
        max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion)
        assert max_diff < 1e-4

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion_effectivity(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        original_image_slice = images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        _ = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        pipe.unfuse_lora()

        # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights
        pipe.unload_lora_weights()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora_fusion_efficiency(self):
        generator = torch.Generator().manual_seed(0)
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

Dhruv Nair's avatar
Dhruv Nair committed
1996
1997
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
        pipe.enable_model_cpu_offload()

        start_time = time.time()
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_non_fusion = end_time - start_time

        del pipe

Dhruv Nair's avatar
Dhruv Nair committed
2010
2011
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
2012
        pipe.fuse_lora()
Dhruv Nair's avatar
Dhruv Nair committed
2013

2014
2015
2016
2017
2018
2019
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
Dhruv Nair's avatar
Dhruv Nair committed
2020
        start_time = time.time()
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_fusion = end_time - start_time

        self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
        release_memory(pipe)

    def test_sdxl_1_0_last_ben(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "TheLastBen/Papercut_SDXL"
        lora_filename = "papercut.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_fuse_unfuse_all(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
        text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
        unet_sd = copy.deepcopy(pipe.unet.state_dict())

        pipe.load_lora_weights(
            "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
        )

        fused_te_state_dict = pipe.text_encoder.state_dict()
        fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
        unet_state_dict = pipe.unet.state_dict()

2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
        peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0")

        def remap_key(key, sd):
            # some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly
            if (key in sd) or (not peft_ge_070):
                return key

            # instead of linear.weight, we now have linear.base_layer.weight, etc.
            if key.endswith(".weight"):
                key = key[:-7] + ".base_layer.weight"
            elif key.endswith(".bias"):
                key = key[:-5] + ".base_layer.bias"
            return key

2076
        for key, value in text_encoder_1_sd.items():
2077
            key = remap_key(key, fused_te_state_dict)
2078
2079
2080
            self.assertTrue(torch.allclose(fused_te_state_dict[key], value))

        for key, value in text_encoder_2_sd.items():
2081
            key = remap_key(key, fused_te_2_state_dict)
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
            self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value))

        for key, value in unet_state_dict.items():
            self.assertTrue(torch.allclose(unet_state_dict[key], value))

        pipe.fuse_lora()
        pipe.unload_lora_weights()

        assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
        assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
        assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
        release_memory(pipe)
        del unet_sd, text_encoder_1_sd, text_encoder_2_sd

    def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
    def test_sd_load_civitai_empty_network_alpha(self):
        """
        This test simply checks that loading a LoRA with an empty network alpha works fine
        See: https://github.com/huggingface/diffusers/issues/5606
        """
        pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda")
        pipeline.enable_sequential_cpu_offload()
        civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors")
        pipeline.load_lora_weights(civitai_path, adapter_name="ahri")

        images = pipeline(
            "ahri, masterpiece, league of legends",
            output_type="np",
            generator=torch.manual_seed(156),
            num_inference_steps=5,
        ).images
        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipeline)

2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
    def test_canny_lora(self):
        controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")

        pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
        )
        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
        pipe.enable_sequential_cpu_offload()

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "corgi"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

        assert images[0].shape == (768, 512, 3)

        original_image = images[0, -3:, -3:, -1].flatten()
        expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
        assert np.allclose(original_image, expected_image, atol=1e-04)
        release_memory(pipe)

    @nightly
    def test_sequential_fuse_unfuse(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)

        # 1. round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice = images[0, -3:, -3:, -1].flatten()

        pipe.unfuse_lora()

        # 2. round
        pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 3. round
        pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 4. back to 1st round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images_2 = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice_2 = images_2[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(image_slice, image_slice_2, atol=1e-3))
        release_memory(pipe)