test_animatediff.py 14.1 KB
Newer Older
Dhruv Nair's avatar
Dhruv Nair committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import gc
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import (
    AnimateDiffPipeline,
    AutoencoderKL,
    DDIMScheduler,
    MotionAdapter,
    UNet2DConditionModel,
    UNetMotionModel,
)
17
from diffusers.utils import is_xformers_available, logging
Dhruv Nair's avatar
Dhruv Nair committed
18
19
20
from diffusers.utils.testing_utils import numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
21
22
23
24
25
26
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineFromPipeTesterMixin,
    PipelineTesterMixin,
    SDFunctionTesterMixin,
)
Dhruv Nair's avatar
Dhruv Nair committed
27
28
29
30
31
32
33
34
35


def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


36
class AnimateDiffPipelineFastTests(
37
    IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase
38
):
Dhruv Nair's avatar
Dhruv Nair committed
39
40
41
42
43
44
45
46
47
    pipeline_class = AnimateDiffPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
Aryan V S's avatar
Aryan V S committed
48
49
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
Dhruv Nair's avatar
Dhruv Nair committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        ]
    )

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            norm_num_groups=2,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            clip_sample=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        motion_adapter = MotionAdapter(
            block_out_channels=(32, 64),
            motion_layers_per_block=2,
            motion_norm_num_groups=2,
            motion_num_attention_heads=4,
        )

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "motion_adapter": motion_adapter,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
109
110
            "feature_extractor": None,
            "image_encoder": None,
Dhruv Nair's avatar
Dhruv Nair committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 7.5,
            "output_type": "pt",
        }
        return inputs

    def test_motion_unet_loading(self):
        components = self.get_dummy_components()
        pipe = AnimateDiffPipeline(**components)

        assert isinstance(pipe.unet, UNetMotionModel)

    @unittest.skip("Attention slicing is not enabled in this pipeline")
    def test_attention_slicing_forward_pass(self):
        pass

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def test_ip_adapter_single(self):
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array(
                [
                    0.5541,
                    0.5802,
                    0.5074,
                    0.4583,
                    0.4729,
                    0.5374,
                    0.4051,
                    0.4495,
                    0.4480,
                    0.5292,
                    0.6322,
                    0.6265,
                    0.5455,
                    0.4771,
                    0.5795,
                    0.5845,
                    0.4172,
                    0.6066,
                    0.6535,
                    0.4113,
                    0.6833,
                    0.5736,
                    0.3589,
                    0.5730,
                    0.4205,
                    0.3786,
                    0.5323,
                ]
            )
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

Dhruv Nair's avatar
Dhruv Nair committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    def test_inference_batch_single_identical(
        self,
        batch_size=2,
        expected_max_diff=1e-4,
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batched_inputs.update(inputs)

        for name in self.batch_params:
            if name not in inputs:
                continue

            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"

            else:
                batched_inputs[name] = batch_size * [value]

        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]

        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]

        output = pipe(**inputs)
        output_batch = pipe(**batched_inputs)

        assert output_batch[0].shape[0] == batch_size

        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
        assert max_diff < expected_max_diff

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        # pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)

    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        # pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

264
        pipe.to(dtype=torch.float16)
Dhruv Nair's avatar
Dhruv Nair committed
265
266
267
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

268
269
270
271
272
273
274
275
276
277
278
    def test_prompt_embeds(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("prompt")
        inputs["prompt_embeds"] = torch.randn((1, 4, 32), device=torch_device)
        pipe(**inputs)

Aryan V S's avatar
Aryan V S committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def test_free_init(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs_normal = self.get_dummy_inputs(torch_device)
        frames_normal = pipe(**inputs_normal).frames[0]

        pipe.enable_free_init(
            num_iters=2,
            use_fast_sampling=True,
            method="butterworth",
            order=4,
            spatial_stop_frequency=0.25,
            temporal_stop_frequency=0.25,
        )
        inputs_enable_free_init = self.get_dummy_inputs(torch_device)
        frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]

        pipe.disable_free_init()
        inputs_disable_free_init = self.get_dummy_inputs(torch_device)
        frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]

        sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
        max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
        self.assertGreater(
306
            sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results"
Aryan V S's avatar
Aryan V S committed
307
308
309
310
311
312
313
        )
        self.assertLess(
            max_diff_disabled,
            1e-4,
            "Disabling of FreeInit should lead to results similar to the default pipeline results",
        )

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs).frames[0]
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs).frames[0]
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")

343
344
345
    def test_vae_slicing(self):
        return super().test_vae_slicing(image_count=2)

Dhruv Nair's avatar
Dhruv Nair committed
346
347
348
349

@slow
@require_torch_gpu
class AnimateDiffPipelineSlowTests(unittest.TestCase):
350
351
352
353
354
355
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Dhruv Nair's avatar
Dhruv Nair committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_animatediff(self):
        adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
        pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
        pipe = pipe.to(torch_device)
        pipe.scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            steps_offset=1,
            clip_sample=False,
        )
        pipe.enable_vae_slicing()
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        prompt = "night, b&w photo of old house, post apocalypse, forest, storm weather, wind, rocks, 8k uhd, dslr, soft lighting, high quality, film grain"
        negative_prompt = "bad quality, worse quality"

        generator = torch.Generator("cpu").manual_seed(0)
        output = pipe(
            prompt,
            negative_prompt=negative_prompt,
            num_frames=16,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=3,
            output_type="np",
        )

        image = output.frames[0]
        assert image.shape == (16, 512, 512, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array(
            [
                0.11357737,
                0.11285847,
                0.11180121,
                0.11084166,
                0.11414117,
                0.09785956,
                0.10742754,
                0.10510018,
                0.08045256,
            ]
        )
        assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3