Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
781775ea
Unverified
Commit
781775ea
authored
Dec 19, 2023
by
Dhruv Nair
Committed by
GitHub
Dec 19, 2023
Browse files
Slow Test for Pipelines minor fixes (#6221)
update
parent
fa3c86be
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
41 additions
and
13 deletions
+41
-13
src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
+3
-3
src/diffusers/pipelines/unclip/pipeline_unclip.py
src/diffusers/pipelines/unclip/pipeline_unclip.py
+2
-1
src/diffusers/pipelines/unclip/pipeline_unclip_image_variation.py
...users/pipelines/unclip/pipeline_unclip_image_variation.py
+1
-0
tests/pipelines/animatediff/test_animatediff.py
tests/pipelines/animatediff/test_animatediff.py
+30
-1
tests/pipelines/stable_diffusion/test_stable_diffusion_adapter.py
...pelines/stable_diffusion/test_stable_diffusion_adapter.py
+1
-2
tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_adapter.py
...s/stable_diffusion_xl/test_stable_diffusion_xl_adapter.py
+4
-6
No files found.
src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
View file @
781775ea
...
@@ -283,6 +283,9 @@ class ShapEImg2ImgPipeline(DiffusionPipeline):
...
@@ -283,6 +283,9 @@ class ShapEImg2ImgPipeline(DiffusionPipeline):
f
"Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type=
{
output_type
}
"
f
"Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type=
{
output_type
}
"
)
)
# Offload all models
self
.
maybe_free_model_hooks
()
if
output_type
==
"latent"
:
if
output_type
==
"latent"
:
return
ShapEPipelineOutput
(
images
=
latents
)
return
ShapEPipelineOutput
(
images
=
latents
)
...
@@ -312,9 +315,6 @@ class ShapEImg2ImgPipeline(DiffusionPipeline):
...
@@ -312,9 +315,6 @@ class ShapEImg2ImgPipeline(DiffusionPipeline):
if
output_type
==
"pil"
:
if
output_type
==
"pil"
:
images
=
[
self
.
numpy_to_pil
(
image
)
for
image
in
images
]
images
=
[
self
.
numpy_to_pil
(
image
)
for
image
in
images
]
# Offload all models
self
.
maybe_free_model_hooks
()
if
not
return_dict
:
if
not
return_dict
:
return
(
images
,)
return
(
images
,)
...
...
src/diffusers/pipelines/unclip/pipeline_unclip.py
View file @
781775ea
...
@@ -477,8 +477,9 @@ class UnCLIPPipeline(DiffusionPipeline):
...
@@ -477,8 +477,9 @@ class UnCLIPPipeline(DiffusionPipeline):
image
=
super_res_latents
image
=
super_res_latents
# done super res
# done super res
# post processing
self
.
maybe_free_model_hooks
()
# post processing
image
=
image
*
0.5
+
0.5
image
=
image
*
0.5
+
0.5
image
=
image
.
clamp
(
0
,
1
)
image
=
image
.
clamp
(
0
,
1
)
image
=
image
.
cpu
().
permute
(
0
,
2
,
3
,
1
).
float
().
numpy
()
image
=
image
.
cpu
().
permute
(
0
,
2
,
3
,
1
).
float
().
numpy
()
...
...
src/diffusers/pipelines/unclip/pipeline_unclip_image_variation.py
View file @
781775ea
...
@@ -403,6 +403,7 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
...
@@ -403,6 +403,7 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
image
=
super_res_latents
image
=
super_res_latents
# done super res
# done super res
self
.
maybe_free_model_hooks
()
# post processing
# post processing
...
...
tests/pipelines/animatediff/test_animatediff.py
View file @
781775ea
...
@@ -14,7 +14,7 @@ from diffusers import (
...
@@ -14,7 +14,7 @@ from diffusers import (
UNet2DConditionModel
,
UNet2DConditionModel
,
UNetMotionModel
,
UNetMotionModel
,
)
)
from
diffusers.utils
import
logging
from
diffusers.utils
import
is_xformers_available
,
logging
from
diffusers.utils.testing_utils
import
numpy_cosine_similarity_distance
,
require_torch_gpu
,
slow
,
torch_device
from
diffusers.utils.testing_utils
import
numpy_cosine_similarity_distance
,
require_torch_gpu
,
slow
,
torch_device
from
..pipeline_params
import
TEXT_TO_IMAGE_BATCH_PARAMS
,
TEXT_TO_IMAGE_PARAMS
from
..pipeline_params
import
TEXT_TO_IMAGE_BATCH_PARAMS
,
TEXT_TO_IMAGE_PARAMS
...
@@ -233,6 +233,35 @@ class AnimateDiffPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
...
@@ -233,6 +233,35 @@ class AnimateDiffPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
inputs
[
"prompt_embeds"
]
=
torch
.
randn
((
1
,
4
,
32
),
device
=
torch_device
)
inputs
[
"prompt_embeds"
]
=
torch
.
randn
((
1
,
4
,
32
),
device
=
torch_device
)
pipe
(
**
inputs
)
pipe
(
**
inputs
)
@
unittest
.
skipIf
(
torch_device
!=
"cuda"
or
not
is_xformers_available
(),
reason
=
"XFormers attention is only available with CUDA and `xformers` installed"
,
)
def
test_xformers_attention_forwardGenerator_pass
(
self
):
components
=
self
.
get_dummy_components
()
pipe
=
self
.
pipeline_class
(
**
components
)
for
component
in
pipe
.
components
.
values
():
if
hasattr
(
component
,
"set_default_attn_processor"
):
component
.
set_default_attn_processor
()
pipe
.
to
(
torch_device
)
pipe
.
set_progress_bar_config
(
disable
=
None
)
inputs
=
self
.
get_dummy_inputs
(
torch_device
)
output_without_offload
=
pipe
(
**
inputs
).
frames
[
0
]
output_without_offload
=
(
output_without_offload
.
cpu
()
if
torch
.
is_tensor
(
output_without_offload
)
else
output_without_offload
)
pipe
.
enable_xformers_memory_efficient_attention
()
inputs
=
self
.
get_dummy_inputs
(
torch_device
)
output_with_offload
=
pipe
(
**
inputs
).
frames
[
0
]
output_with_offload
=
(
output_with_offload
.
cpu
()
if
torch
.
is_tensor
(
output_with_offload
)
else
output_without_offload
)
max_diff
=
np
.
abs
(
to_np
(
output_with_offload
)
-
to_np
(
output_without_offload
)).
max
()
self
.
assertLess
(
max_diff
,
1e-4
,
"XFormers attention should not affect the inference results"
)
@
slow
@
slow
@
require_torch_gpu
@
require_torch_gpu
...
...
tests/pipelines/stable_diffusion/test_stable_diffusion_adapter.py
View file @
781775ea
...
@@ -804,8 +804,7 @@ class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase):
...
@@ -804,8 +804,7 @@ class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase):
pipe
=
StableDiffusionAdapterPipeline
.
from_pretrained
(
sd_model
,
adapter
=
adapter
,
safety_checker
=
None
)
pipe
=
StableDiffusionAdapterPipeline
.
from_pretrained
(
sd_model
,
adapter
=
adapter
,
safety_checker
=
None
)
pipe
.
to
(
torch_device
)
pipe
.
to
(
torch_device
)
pipe
.
set_progress_bar_config
(
disable
=
None
)
pipe
.
set_progress_bar_config
(
disable
=
None
)
pipe
.
enable_attention_slicing
()
pipe
.
enable_model_cpu_offload
()
generator
=
torch
.
Generator
(
device
=
"cpu"
).
manual_seed
(
0
)
generator
=
torch
.
Generator
(
device
=
"cpu"
).
manual_seed
(
0
)
out
=
pipe
(
prompt
=
prompt
,
image
=
image
,
generator
=
generator
,
num_inference_steps
=
2
,
output_type
=
"np"
).
images
out
=
pipe
(
prompt
=
prompt
,
image
=
image
,
generator
=
generator
,
num_inference_steps
=
2
,
output_type
=
"np"
).
images
...
...
tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_adapter.py
View file @
781775ea
...
@@ -681,7 +681,7 @@ class AdapterSDXLPipelineSlowTests(unittest.TestCase):
...
@@ -681,7 +681,7 @@ class AdapterSDXLPipelineSlowTests(unittest.TestCase):
variant
=
"fp16"
,
variant
=
"fp16"
,
)
)
pipe
.
load_lora_weights
(
"CiroN2022/toy-face"
,
weight_name
=
"toy_face_sdxl.safetensors"
)
pipe
.
load_lora_weights
(
"CiroN2022/toy-face"
,
weight_name
=
"toy_face_sdxl.safetensors"
)
pipe
.
enable_
sequentia
l_cpu_offload
()
pipe
.
enable_
mode
l_cpu_offload
()
pipe
.
set_progress_bar_config
(
disable
=
None
)
pipe
.
set_progress_bar_config
(
disable
=
None
)
generator
=
torch
.
Generator
(
device
=
"cpu"
).
manual_seed
(
0
)
generator
=
torch
.
Generator
(
device
=
"cpu"
).
manual_seed
(
0
)
...
@@ -694,8 +694,6 @@ class AdapterSDXLPipelineSlowTests(unittest.TestCase):
...
@@ -694,8 +694,6 @@ class AdapterSDXLPipelineSlowTests(unittest.TestCase):
assert
images
[
0
].
shape
==
(
768
,
512
,
3
)
assert
images
[
0
].
shape
==
(
768
,
512
,
3
)
original_image
=
images
[
0
,
-
3
:,
-
3
:,
-
1
].
flatten
()
image_slice
=
images
[
0
,
-
3
:,
-
3
:,
-
1
].
flatten
()
expected_image
=
np
.
array
(
expected_slice
=
np
.
array
([
0.4284
,
0.4337
,
0.4319
,
0.4255
,
0.4329
,
0.4280
,
0.4338
,
0.4420
,
0.4226
])
[
0.50346327
,
0.50708383
,
0.50719553
,
0.5135172
,
0.5155377
,
0.5066059
,
0.49680984
,
0.5005894
,
0.48509413
]
assert
numpy_cosine_similarity_distance
(
image_slice
,
expected_slice
)
<
1e-4
)
assert
numpy_cosine_similarity_distance
(
original_image
,
expected_image
)
<
1e-4
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment