test_unclip.py 16.5 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
Will Berman's avatar
Will Berman committed
22
23
24

from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
Dhruv Nair's avatar
Dhruv Nair committed
25
26
27
28
29
30
31
32
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    load_numpy,
    nightly,
    require_torch_gpu,
    skip_mps,
    torch_device,
)
Will Berman's avatar
Will Berman committed
33

34
35
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Will Berman's avatar
Will Berman committed
36
37


38
enable_full_determinism()
39
40


41
42
class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPPipeline
43
44
45
46
47
48
49
50
51
52
    params = TEXT_TO_IMAGE_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
        "guidance_scale",
        "prompt_embeds",
        "cross_attention_kwargs",
    }
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
53
54
55
56
57
58
59
    required_optional_params = [
        "generator",
        "return_dict",
        "prior_num_inference_steps",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
60
    test_xformers_attention = False
Will Berman's avatar
Will Berman committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 12,
            "embedding_dim": self.text_embedder_hidden_size,
            "num_layers": 1,
        }

        model = PriorTransformer(**model_kwargs)
        return model

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
136
            "sample_size": 32,
Will Berman's avatar
Will Berman committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
158
            "sample_size": 64,
Will Berman's avatar
Will Berman committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

182
    def get_dummy_components(self):
Will Berman's avatar
Will Berman committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        prior = self.dummy_prior
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        prior_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample_range=5.0,
        )

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        components = {
            "prior": prior,
            "decoder": decoder,
            "text_proj": text_proj,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "prior_scheduler": prior_scheduler,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "prior_num_inference_steps": 2,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
236
            "output_type": "np",
237
238
239
240
241
242
243
244
245
        }
        return inputs

    def test_unclip(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
Will Berman's avatar
Will Berman committed
246
247
248
249
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

250
        output = pipe(**self.get_dummy_inputs(device))
Will Berman's avatar
Will Berman committed
251
252
253
        image = output.images

        image_from_tuple = pipe(
254
            **self.get_dummy_inputs(device),
Will Berman's avatar
Will Berman committed
255
256
257
258
259
260
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

261
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
262
263
264
265

        expected_slice = np.array(
            [
                0.9997,
266
267
268
269
270
271
272
273
                0.9988,
                0.0028,
                0.9997,
                0.9984,
                0.9965,
                0.0029,
                0.9986,
                0.0025,
Will Berman's avatar
Will Berman committed
274
275
276
277
278
279
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

280
281
282
283
284
285
    def test_unclip_passed_text_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

286
        components = self.get_dummy_components()
287

288
        pipe = self.pipeline_class(**components)
289
290
        pipe = pipe.to(device)

291
292
293
294
295
296
        prior = components["prior"]
        decoder = components["decoder"]
        super_res_first = components["super_res_first"]
        tokenizer = components["tokenizer"]
        text_encoder = components["text_encoder"]

297
298
299
300
301
302
303
304
        generator = torch.Generator(device=device).manual_seed(0)
        dtype = prior.dtype
        batch_size = 1

        shape = (batch_size, prior.config.embedding_dim)
        prior_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )
305
        shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size)
306
307
308
309
310
311
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
312
313
314
            super_res_first.config.in_channels // 2,
            super_res_first.config.sample_size,
            super_res_first.config.sample_size,
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        pipe.set_progress_bar_config(disable=None)

        prompt = "this is a prompt example"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe(
            [prompt],
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            output_type="np",
        )
        image = output.images

        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_model_output = text_encoder(text_inputs.input_ids)
        text_attention_mask = text_inputs.attention_mask

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_text = pipe(
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            text_model_output=text_model_output,
            text_attention_mask=text_attention_mask,
            output_type="np",
        )[0]

        # make sure passing text embeddings manually is identical
        assert np.abs(image - image_from_text).max() < 1e-4

364
365
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
366
    @skip_mps
367
368
369
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
370
        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01)
371
372
373

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
374
    @skip_mps
375
    def test_inference_batch_single_identical(self):
376
377
378
379
380
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
381
382

        self._test_inference_batch_single_identical(
383
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3
384
385
386
        )

    def test_inference_batch_consistent(self):
387
388
389
390
391
392
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

393
394
395
        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
396
397
398
399
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
400
        else:
401
402
403
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )
404

405
    @skip_mps
406
407
408
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

409
    @skip_mps
410
    def test_save_load_local(self):
411
        return super().test_save_load_local(expected_max_difference=5e-3)
412

413
    @skip_mps
414
415
416
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

417
418
419
420
    @unittest.skip("UnCLIP produces very large differences in fp16 vs fp32. Test is not useful.")
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1.0)

Will Berman's avatar
Will Berman committed
421

422
423
@nightly
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase):
424
425
426
427
428
429
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo_cpu_fp32(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_horse_cpu.npy"
        )

        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha")
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        output = pipeline(
            "horse",
            num_images_per_prompt=1,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).max() < 1e-1


459
@nightly
Will Berman's avatar
Will Berman committed
460
461
@require_torch_gpu
class UnCLIPPipelineIntegrationTests(unittest.TestCase):
462
463
464
465
466
467
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Will Berman's avatar
Will Berman committed
468
469
470
471
472
473
474
475
476
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
477
            "/unclip/karlo_v1_alpha_horse_fp16.npy"
Will Berman's avatar
Will Berman committed
478
479
        )

480
        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
481
482
483
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

484
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
485
486
487
488
489
490
        output = pipeline(
            "horse",
            generator=generator,
            output_type="np",
        )

491
        image = output.images[0]
Will Berman's avatar
Will Berman committed
492
493

        assert image.shape == (256, 256, 3)
494

495
496
        assert_mean_pixel_difference(image, expected_image)

Will Berman's avatar
Will Berman committed
497
    def test_unclip_pipeline_with_sequential_cpu_offloading(self):
498
499
500
501
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

502
        pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
            "horse",
            num_images_per_prompt=1,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
518
519
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9