"git@developer.sourcefind.cn:gaoqiong/yaml-cpp.git" did not exist on "4fc5ec36bcd29495438ac239d5e69f447cc0751a"
pipeline_stable_diffusion.py 17.2 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
import inspect
2
from typing import Callable, List, Optional, Union
Suraj Patil's avatar
Suraj Patil committed
3
4
5

import torch

Suraj Patil's avatar
Suraj Patil committed
6
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
Suraj Patil's avatar
Suraj Patil committed
7

8
from ...configuration_utils import FrozenDict
Suraj Patil's avatar
Suraj Patil committed
9
10
from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline
11
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
12
from ...utils import deprecate, logging
13
from . import StableDiffusionPipelineOutput
Suraj Patil's avatar
Suraj Patil committed
14
from .safety_checker import StableDiffusionSafetyChecker
Suraj Patil's avatar
Suraj Patil committed
15
16


17
18
19
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


Suraj Patil's avatar
Suraj Patil committed
20
class StableDiffusionPipeline(DiffusionPipeline):
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
42
            Classification module that estimates whether generated images could be considered offensive or harmful.
43
44
45
46
47
            Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

Suraj Patil's avatar
Suraj Patil committed
48
49
50
51
52
53
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
54
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
Suraj Patil's avatar
Suraj Patil committed
55
56
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
Suraj Patil's avatar
Suraj Patil committed
57
58
    ):
        super().__init__()
59
60

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
            deprecation_message = (
62
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
Yuta Hayashibe's avatar
Yuta Hayashibe committed
63
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
65
66
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
                " file"
68
            )
69
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
71
72
73
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

Suraj Patil's avatar
Suraj Patil committed
74
75
76
77
78
79
80
81
82
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
Suraj Patil's avatar
Suraj Patil committed
83

84
    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
85
86
87
        r"""
        Enable sliced attention computation.

Pedro Cuenca's avatar
Pedro Cuenca committed
88
89
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
90
91
92

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
Pedro Cuenca's avatar
Pedro Cuenca committed
93
94
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
95
96
                `attention_head_dim` must be a multiple of `slice_size`.
        """
97
98
99
100
101
102
103
        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = self.unet.config.attention_head_dim // 2
        self.unet.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
104
105
106
107
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
Patrick von Platen's avatar
Patrick von Platen committed
108
109
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)
110

Suraj Patil's avatar
Suraj Patil committed
111
112
113
114
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
115
116
117
118
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
119
        negative_prompt: Optional[Union[str, List[str]]] = None,
120
        eta: float = 0.0,
Suraj Patil's avatar
Suraj Patil committed
121
        generator: Optional[torch.Generator] = None,
122
        latents: Optional[torch.FloatTensor] = None,
Suraj Patil's avatar
Suraj Patil committed
123
        output_type: Optional[str] = "pil",
124
        return_dict: bool = True,
125
126
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
Pedro Cuenca's avatar
Pedro Cuenca committed
127
        **kwargs,
Suraj Patil's avatar
Suraj Patil committed
128
    ):
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
148
149
150
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
151
152
153
154
155
156
157
158
159
160
161
162
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
163
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
164
165
166
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
167
168
169
170
171
172
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
173
174

        Returns:
175
176
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
177
178
179
180
181
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """

Suraj Patil's avatar
Suraj Patil committed
182
183
184
185
186
187
188
        if isinstance(prompt, str):
            batch_size = 1
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

189
190
191
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

192
193
194
195
196
197
198
199
        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

Suraj Patil's avatar
Suraj Patil committed
200
        # get prompt text embeddings
201
        text_inputs = self.tokenizer(
202
203
204
205
206
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
207
208
209
210
211
212
213
214
215
216
        text_input_ids = text_inputs.input_ids

        if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
            removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
        text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
Suraj Patil's avatar
Suraj Patil committed
217
218
219
220
221
222
223

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    "`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    " {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt] * batch_size
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

243
            max_length = text_input_ids.shape[-1]
Suraj Patil's avatar
Suraj Patil committed
244
            uncond_input = self.tokenizer(
245
246
247
248
249
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
Suraj Patil's avatar
Suraj Patil committed
250
            )
Pedro Cuenca's avatar
Pedro Cuenca committed
251
            uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
Suraj Patil's avatar
Suraj Patil committed
252
253
254
255
256
257

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

258
        # get the initial random noise unless the user supplied it
259
260
261
262
263

        # Unlike in other pipelines, latents need to be generated in the target device
        # for 1-to-1 results reproducibility with the CompVis implementation.
        # However this currently doesn't work in `mps`.
        latents_device = "cpu" if self.device.type == "mps" else self.device
264
265
266
267
268
        latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
        if latents is None:
            latents = torch.randn(
                latents_shape,
                generator=generator,
269
                device=latents_device,
270
                dtype=text_embeddings.dtype,
271
272
273
274
            )
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
275
            latents = latents.to(latents_device)
276
277

        # set timesteps
278
        self.scheduler.set_timesteps(num_inference_steps)
Suraj Patil's avatar
Suraj Patil committed
279

280
        # Some schedulers like PNDM have timesteps as arrays
281
282
        # It's more optimized to move all timesteps to correct device beforehand
        timesteps_tensor = self.scheduler.timesteps.to(self.device)
283

284
        # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
285
286
287
        if isinstance(self.scheduler, LMSDiscreteScheduler):
            latents = latents * self.scheduler.sigmas[0]

Suraj Patil's avatar
Suraj Patil committed
288
289
290
291
292
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
293
        extra_step_kwargs = {}
Suraj Patil's avatar
Suraj Patil committed
294
        if accepts_eta:
295
            extra_step_kwargs["eta"] = eta
Suraj Patil's avatar
Suraj Patil committed
296

297
        for i, t in enumerate(self.progress_bar(timesteps_tensor)):
Suraj Patil's avatar
Suraj Patil committed
298
299
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
300
301
            if isinstance(self.scheduler, LMSDiscreteScheduler):
                sigma = self.scheduler.sigmas[i]
302
                # the model input needs to be scaled to match the continuous ODE formulation in K-LMS
303
                latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
Suraj Patil's avatar
Suraj Patil committed
304
305

            # predict the noise residual
306
            noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
Suraj Patil's avatar
Suraj Patil committed
307
308
309
310
311
312
313

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
314
            if isinstance(self.scheduler, LMSDiscreteScheduler):
315
                latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
316
            else:
317
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
Suraj Patil's avatar
Suraj Patil committed
318

319
320
321
322
            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

Suraj Patil's avatar
Suraj Patil committed
323
        latents = 1 / 0.18215 * latents
324
        image = self.vae.decode(latents).sample
Suraj Patil's avatar
Suraj Patil committed
325
326
327

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
Suraj Patil's avatar
Suraj Patil committed
328

329
        safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
330
331
332
        image, has_nsfw_concept = self.safety_checker(
            images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
        )
Suraj Patil's avatar
Suraj Patil committed
333

Suraj Patil's avatar
Suraj Patil committed
334
335
336
        if output_type == "pil":
            image = self.numpy_to_pil(image)

337
338
339
340
        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)