test_latent_diffusion_superresolution.py 4.49 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np
import torch

from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel
Dhruv Nair's avatar
Dhruv Nair committed
23
24
25
26
27
from diffusers.utils import PIL_INTERPOLATION
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_image,
28
    nightly,
Dhruv Nair's avatar
Dhruv Nair committed
29
30
31
    require_torch,
    torch_device,
)
32
33


34
enable_full_determinism()
35
36


37
class LDMSuperResolutionPipelineFastTests(unittest.TestCase):
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=6,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    def test_inference_superresolution(self):
75
        device = "cpu"
76
77
78
79
80
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler()
        vqvae = self.dummy_vq_model

        ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
81
        ldm.to(device)
82
83
        ldm.set_progress_bar_config(disable=None)

84
        init_image = self.dummy_image.to(device)
85

86
        generator = torch.Generator(device=device).manual_seed(0)
87
        image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images
88
89
90
91

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
92
        expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150])
93

94
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_inference_superresolution_fp16(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler()
        vqvae = self.dummy_vq_model

        # put models in fp16
        unet = unet.half()
        vqvae = vqvae.half()

        ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
        ldm.to(torch_device)
        ldm.set_progress_bar_config(disable=None)

        init_image = self.dummy_image.to(torch_device)

112
        image = ldm(init_image, num_inference_steps=2, output_type="np").images
113
114
115

        assert image.shape == (1, 64, 64, 3)

116

117
@nightly
118
119
120
121
122
123
124
@require_torch
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase):
    def test_inference_superresolution(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/vq_diffusion/teddy_bear_pool.png"
        )
125
        init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"])
126

127
        ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution")
128
129
        ldm.set_progress_bar_config(disable=None)

130
        generator = torch.manual_seed(0)
131
        image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images
132
133
134
135

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
136
137
        expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907])

138
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2