test_latent_diffusion_superresolution.py 4.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np
import torch

from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel
23
from diffusers.utils import PIL_INTERPOLATION, floats_tensor, load_image, slow, torch_device
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from diffusers.utils.testing_utils import require_torch

from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class LDMSuperResolutionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=6,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    def test_inference_superresolution(self):
70
        device = "cpu"
71
72
73
74
75
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler()
        vqvae = self.dummy_vq_model

        ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
76
        ldm.to(device)
77
78
        ldm.set_progress_bar_config(disable=None)

79
        init_image = self.dummy_image.to(device)
80

81
        generator = torch.Generator(device=device).manual_seed(0)
82
        image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="numpy").images
83
84
85
86

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
87
88
        expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_inference_superresolution_fp16(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler()
        vqvae = self.dummy_vq_model

        # put models in fp16
        unet = unet.half()
        vqvae = vqvae.half()

        ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
        ldm.to(torch_device)
        ldm.set_progress_bar_config(disable=None)

        init_image = self.dummy_image.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = ldm(init_image, generator=generator, num_inference_steps=2, output_type="numpy").images

        assert image.shape == (1, 64, 64, 3)

111
112
113
114
115
116
117
118
119

@slow
@require_torch
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase):
    def test_inference_superresolution(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/vq_diffusion/teddy_bear_pool.png"
        )
120
        init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"])
121
122
123
124
125
126

        ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution", device_map="auto")
        ldm.to(torch_device)
        ldm.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=torch_device).manual_seed(0)
127
        image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="numpy").images
128
129
130
131
132
133

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.7418, 0.7472, 0.7424, 0.7422, 0.7463, 0.726, 0.7382, 0.7248, 0.6828])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2