test_animatediff.py 16.2 KB
Newer Older
Dhruv Nair's avatar
Dhruv Nair committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import gc
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import (
    AnimateDiffPipeline,
    AutoencoderKL,
    DDIMScheduler,
    MotionAdapter,
14
    StableDiffusionPipeline,
Dhruv Nair's avatar
Dhruv Nair committed
15
16
17
    UNet2DConditionModel,
    UNetMotionModel,
)
18
from diffusers.utils import is_xformers_available, logging
Dhruv Nair's avatar
Dhruv Nair committed
19
20
21
from diffusers.utils.testing_utils import numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
22
23
24
25
26
27
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineFromPipeTesterMixin,
    PipelineTesterMixin,
    SDFunctionTesterMixin,
)
Dhruv Nair's avatar
Dhruv Nair committed
28
29
30
31
32
33
34
35
36


def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


37
class AnimateDiffPipelineFastTests(
38
    IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase
39
):
Dhruv Nair's avatar
Dhruv Nair committed
40
41
42
43
44
45
46
47
48
    pipeline_class = AnimateDiffPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
Aryan V S's avatar
Aryan V S committed
49
50
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
Dhruv Nair's avatar
Dhruv Nair committed
51
52
53
54
        ]
    )

    def get_dummy_components(self):
55
56
57
        cross_attention_dim = 8
        block_out_channels = (8, 8)

Dhruv Nair's avatar
Dhruv Nair committed
58
59
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
60
            block_out_channels=block_out_channels,
Dhruv Nair's avatar
Dhruv Nair committed
61
            layers_per_block=2,
62
            sample_size=8,
Dhruv Nair's avatar
Dhruv Nair committed
63
64
65
66
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
67
            cross_attention_dim=cross_attention_dim,
Dhruv Nair's avatar
Dhruv Nair committed
68
69
70
71
72
73
74
75
76
77
            norm_num_groups=2,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            clip_sample=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
78
            block_out_channels=block_out_channels,
Dhruv Nair's avatar
Dhruv Nair committed
79
80
81
82
83
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
84
            norm_num_groups=2,
Dhruv Nair's avatar
Dhruv Nair committed
85
86
87
88
89
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
90
            hidden_size=cross_attention_dim,
Dhruv Nair's avatar
Dhruv Nair committed
91
92
93
94
95
96
97
98
99
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
100
        torch.manual_seed(0)
Dhruv Nair's avatar
Dhruv Nair committed
101
        motion_adapter = MotionAdapter(
102
            block_out_channels=block_out_channels,
Dhruv Nair's avatar
Dhruv Nair committed
103
104
105
106
107
108
109
110
111
112
113
114
            motion_layers_per_block=2,
            motion_norm_num_groups=2,
            motion_num_attention_heads=4,
        )

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "motion_adapter": motion_adapter,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
115
116
            "feature_extractor": None,
            "image_encoder": None,
Dhruv Nair's avatar
Dhruv Nair committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 7.5,
            "output_type": "pt",
        }
        return inputs

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def test_from_pipe_consistent_config(self):
        assert self.original_pipeline_class == StableDiffusionPipeline
        original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe"
        original_kwargs = {"requires_safety_checker": False}

        # create original_pipeline_class(sd)
        pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)

        # original_pipeline_class(sd) -> pipeline_class
        pipe_components = self.get_dummy_components()
        pipe_additional_components = {}
        for name, component in pipe_components.items():
            if name not in pipe_original.components:
                pipe_additional_components[name] = component

        pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)

        # pipeline_class -> original_pipeline_class(sd)
        original_pipe_additional_components = {}
        for name, component in pipe_original.components.items():
            if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
                original_pipe_additional_components[name] = component

        pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)

        # compare the config
        original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
        original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
        assert original_config_2 == original_config

Dhruv Nair's avatar
Dhruv Nair committed
165
166
167
168
169
170
171
172
173
174
    def test_motion_unet_loading(self):
        components = self.get_dummy_components()
        pipe = AnimateDiffPipeline(**components)

        assert isinstance(pipe.unet, UNetMotionModel)

    @unittest.skip("Attention slicing is not enabled in this pipeline")
    def test_attention_slicing_forward_pass(self):
        pass

175
176
177
178
179
    def test_ip_adapter_single(self):
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array(
                [
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
                    0.5216,
                    0.5620,
                    0.4927,
                    0.5082,
                    0.4786,
                    0.5932,
                    0.5125,
                    0.4514,
                    0.5315,
                    0.4694,
                    0.3276,
                    0.4863,
                    0.3920,
                    0.3684,
                    0.5745,
                    0.4499,
                    0.5081,
                    0.5414,
                    0.6014,
                    0.5062,
                    0.3630,
                    0.5296,
                    0.6018,
                    0.5098,
                    0.4948,
                    0.5101,
                    0.5620,
207
208
209
210
                ]
            )
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

211
212
213
    def test_dict_tuple_outputs_equivalent(self):
        expected_slice = None
        if torch_device == "cpu":
214
            expected_slice = np.array([0.5125, 0.4514, 0.5315, 0.4499, 0.5081, 0.5414, 0.4948, 0.5101, 0.5620])
215
216
        return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)

Dhruv Nair's avatar
Dhruv Nair committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def test_inference_batch_single_identical(
        self,
        batch_size=2,
        expected_max_diff=1e-4,
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batched_inputs.update(inputs)

        for name in self.batch_params:
            if name not in inputs:
                continue

            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"

            else:
                batched_inputs[name] = batch_size * [value]

        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]

        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]

        output = pipe(**inputs)
        output_batch = pipe(**batched_inputs)

        assert output_batch[0].shape[0] == batch_size

        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
        assert max_diff < expected_max_diff

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        # pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)

    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        # pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

306
        pipe.to(dtype=torch.float16)
Dhruv Nair's avatar
Dhruv Nair committed
307
308
309
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

310
311
312
313
314
315
316
317
    def test_prompt_embeds(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("prompt")
318
        inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
319
320
        pipe(**inputs)

Aryan V S's avatar
Aryan V S committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    def test_free_init(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs_normal = self.get_dummy_inputs(torch_device)
        frames_normal = pipe(**inputs_normal).frames[0]

        pipe.enable_free_init(
            num_iters=2,
            use_fast_sampling=True,
            method="butterworth",
            order=4,
            spatial_stop_frequency=0.25,
            temporal_stop_frequency=0.25,
        )
        inputs_enable_free_init = self.get_dummy_inputs(torch_device)
        frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]

        pipe.disable_free_init()
        inputs_disable_free_init = self.get_dummy_inputs(torch_device)
        frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]

        sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
        max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
        self.assertGreater(
348
            sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results"
Aryan V S's avatar
Aryan V S committed
349
350
351
352
353
354
355
        )
        self.assertLess(
            max_diff_disabled,
            1e-4,
            "Disabling of FreeInit should lead to results similar to the default pipeline results",
        )

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs).frames[0]
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs).frames[0]
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")

385
386
387
    def test_vae_slicing(self):
        return super().test_vae_slicing(image_count=2)

Dhruv Nair's avatar
Dhruv Nair committed
388
389
390
391

@slow
@require_torch_gpu
class AnimateDiffPipelineSlowTests(unittest.TestCase):
392
393
394
395
396
397
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Dhruv Nair's avatar
Dhruv Nair committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_animatediff(self):
        adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
        pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
        pipe = pipe.to(torch_device)
        pipe.scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            steps_offset=1,
            clip_sample=False,
        )
        pipe.enable_vae_slicing()
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        prompt = "night, b&w photo of old house, post apocalypse, forest, storm weather, wind, rocks, 8k uhd, dslr, soft lighting, high quality, film grain"
        negative_prompt = "bad quality, worse quality"

        generator = torch.Generator("cpu").manual_seed(0)
        output = pipe(
            prompt,
            negative_prompt=negative_prompt,
            num_frames=16,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=3,
            output_type="np",
        )

        image = output.frames[0]
        assert image.shape == (16, 512, 512, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array(
            [
                0.11357737,
                0.11285847,
                0.11180121,
                0.11084166,
                0.11414117,
                0.09785956,
                0.10742754,
                0.10510018,
                0.08045256,
            ]
        )
        assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3