train_dreambooth_lora_sdxl.py 82.3 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import gc
18
import itertools
19
import json
20
21
22
import logging
import math
import os
23
import random
24
25
import shutil
import warnings
26
from contextlib import nullcontext
27
28
29
30
31
32
33
34
35
from pathlib import Path

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
36
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
37
from huggingface_hub import create_repo, hf_hub_download, upload_folder
38
from huggingface_hub.utils import insecure_hashlib
39
from packaging import version
40
from peft import LoraConfig, set_peft_model_state_dict
41
from peft.utils import get_peft_model_state_dict
42
43
from PIL import Image
from PIL.ImageOps import exif_transpose
44
from safetensors.torch import load_file, save_file
45
46
from torch.utils.data import Dataset
from torchvision import transforms
47
from torchvision.transforms.functional import crop
48
49
50
51
52
53
54
55
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DPMSolverMultistepScheduler,
56
57
    EDMEulerScheduler,
    EulerDiscreteScheduler,
58
    StableDiffusionXLPipeline,
59
60
    UNet2DConditionModel,
)
61
from diffusers.loaders import LoraLoaderMixin
62
from diffusers.optimization import get_scheduler
63
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
64
65
from diffusers.utils import (
    check_min_version,
66
    convert_all_state_dict_to_peft,
67
    convert_state_dict_to_diffusers,
68
    convert_state_dict_to_kohya,
69
70
71
    convert_unet_state_dict_to_peft,
    is_wandb_available,
)
72
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
73
from diffusers.utils.import_utils import is_xformers_available
74
from diffusers.utils.torch_utils import is_compiled_module
75
76


77
78
79
if is_wandb_available():
    import wandb

80
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
sayakpaul's avatar
sayakpaul committed
81
check_min_version("0.29.0")
82
83
84
85

logger = get_logger(__name__)


86
87
88
89
90
91
92
93
94
95
96
97
98
99
def determine_scheduler_type(pretrained_model_name_or_path, revision):
    model_index_filename = "model_index.json"
    if os.path.isdir(pretrained_model_name_or_path):
        model_index = os.path.join(pretrained_model_name_or_path, model_index_filename)
    else:
        model_index = hf_hub_download(
            repo_id=pretrained_model_name_or_path, filename=model_index_filename, revision=revision
        )

    with open(model_index, "r") as f:
        scheduler_type = json.load(f)["scheduler"][1]
    return scheduler_type


100
def save_model_card(
101
    repo_id: str,
102
    use_dora: bool,
103
    images=None,
104
    base_model: str = None,
105
    train_text_encoder=False,
106
107
    instance_prompt=None,
    validation_prompt=None,
108
109
    repo_folder=None,
    vae_path=None,
110
):
111
112
113
114
115
116
117
118
119
    widget_dict = []
    if images is not None:
        for i, image in enumerate(images):
            image.save(os.path.join(repo_folder, f"image_{i}.png"))
            widget_dict.append(
                {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}}
            )

    model_description = f"""
120
# {'SDXL' if 'playground' not in base_model else 'Playground'} LoRA DreamBooth - {repo_id}
121

122
<Gallery />
123

124
## Model description
125

126
These are {repo_id} LoRA adaption weights for {base_model}.
127

128
The weights were trained  using [DreamBooth](https://dreambooth.github.io/).
129

130
LoRA for the text encoder was enabled: {train_text_encoder}.
131

132
Special VAE used for training: {vae_path}.
133
134
135
136
137
138
139
140
141
142
143

## Trigger words

You should use {instance_prompt} to trigger the image generation.

## Download model

Weights for this model are available in Safetensors format.

[Download]({repo_id}/tree/main) them in the Files & versions tab.

144
"""
145
    if "playground" in base_model:
146
147
148
149
        model_description += """\n
## License

Please adhere to the licensing terms as described [here](https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic/blob/main/LICENSE.md).
150
"""
151
152
153
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
154
        license="openrail++" if "playground" not in base_model else "playground-v2dot5-community",
155
        base_model=base_model,
156
        prompt=instance_prompt,
157
158
159
160
161
162
        model_description=model_description,
        widget=widget_dict,
    )
    tags = [
        "text-to-image",
        "text-to-image",
163
        "diffusers-training",
164
        "diffusers",
165
        "lora" if not use_dora else "dora",
166
167
        "template:sd-lora",
    ]
168
    if "playground" in base_model:
169
170
171
        tags.extend(["playground", "playground-diffusers"])
    else:
        tags.extend(["stable-diffusion-xl", "stable-diffusion-xl-diffusers"])
172

173
    model_card = populate_model_card(model_card, tags=tags)
174
    model_card.save(os.path.join(repo_folder, "README.md"))
175
176


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def log_validation(
    pipeline,
    args,
    accelerator,
    pipeline_args,
    epoch,
    is_final_validation=False,
):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

193
194
195
    if not args.do_edm_style_training:
        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type
196

197
198
            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"
199

200
            scheduler_args["variance_type"] = variance_type
201

202
        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
203
204
205
206
207
208

    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
209
210
    # Currently the context determination is a bit hand-wavy. We can improve it in the future if there's a better
    # way to condition it. Reference: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051
211
212
213
214
    if torch.backends.mps.is_available() or "playground" in args.pretrained_model_name_or_path:
        autocast_ctx = nullcontext()
    else:
        autocast_ctx = torch.autocast(accelerator.device.type)
215

216
    with autocast_ctx:
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)]

    for tracker in accelerator.trackers:
        phase_name = "test" if is_final_validation else "validation"
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    phase_name: [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
234
235
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
236
237
238
239

    return images


240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection

        return CLIPTextModelWithProjection
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
269
270
271
272
273
274
    parser.add_argument(
        "--pretrained_vae_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
    )
275
276
277
278
279
280
281
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
282
283
284
285
286
287
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
304
305
306
307
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
308
309
310
311
312
313
314
315
        help=("A folder containing the training data. "),
    )

    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
316
    )
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

    parser.add_argument(
        "--image_column",
        type=str,
        default="image",
        help="The column of the dataset containing the target image. By "
        "default, the standard Image Dataset maps out 'file_name' "
        "to 'image'.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default=None,
        help="The column of the dataset containing the instance prompt for each image",
    )

    parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")

335
336
337
338
339
340
341
342
343
344
345
346
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
347
        help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
376
377
378
379
380
381
    parser.add_argument(
        "--do_edm_style_training",
        default=False,
        action="store_true",
        help="Flag to conduct training using the EDM formulation as introduced in https://arxiv.org/abs/2206.00364.",
    )
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
404
405
406
407
408
    parser.add_argument(
        "--output_kohya_format",
        action="store_true",
        help="Flag to additionally generate final state dict in the Kohya format so that it becomes compatible with A111, Comfy, Kohya, etc.",
    )
409
410
411
412
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
413
        default=1024,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
428
429
430
431
432
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
490
        default=1e-4,
491
492
        help="Initial learning rate (after the potential warmup period) to use.",
    )
493
494
495
496
497
498
499

    parser.add_argument(
        "--text_encoder_lr",
        type=float,
        default=5e-6,
        help="Text encoder learning rate to use.",
    )
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
515
516
517
518
519
520
521
522

    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

    parser.add_argument(
        "--optimizer",
        type=str,
        default="AdamW",
        help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
    )

    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
    )

    parser.add_argument(
        "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--prodigy_beta3",
        type=float,
        default=None,
        help="coefficients for computing the Prodidy stepsize using running averages. If set to None, "
        "uses the value of square root of beta2. Ignored if optimizer is adamW",
    )
    parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
570
    parser.add_argument(
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
    )

    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
    )

    parser.add_argument(
        "--prodigy_use_bias_correction",
        type=bool,
        default=True,
        help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
    )
    parser.add_argument(
        "--prodigy_safeguard_warmup",
        type=bool,
        default=True,
        help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
        "Ignored if optimizer is adamW",
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    )
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
654
655
656
657
658
659
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
660
661
662
663
664
665
666
667
668
    parser.add_argument(
        "--use_dora",
        action="store_true",
        default=False,
        help=(
            "Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
            "Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
        ),
    )
669
670
671
672
673
674

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

675
676
677
678
679
680
    if args.dataset_name is None and args.instance_data_dir is None:
        raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`")

    if args.dataset_name is not None and args.instance_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`")

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
703
    It pre-processes the images.
704
705
706
707
708
    """

    def __init__(
        self,
        instance_data_root,
709
710
        instance_prompt,
        class_prompt,
711
712
713
        class_data_root=None,
        class_num=None,
        size=1024,
714
        repeats=1,
715
716
717
718
719
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        self.instance_prompt = instance_prompt
        self.custom_instance_prompts = None
        self.class_prompt = class_prompt

        # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory,
        # we load the training data using load_dataset
        if args.dataset_name is not None:
            try:
                from datasets import load_dataset
            except ImportError:
                raise ImportError(
                    "You are trying to load your data using the datasets library. If you wish to train using custom "
                    "captions please install the datasets library: `pip install datasets`. If you wish to load a "
                    "local folder containing images only, specify --instance_data_dir instead."
                )
            # Downloading and loading a dataset from the hub.
            # See more about loading custom images at
            # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
            dataset = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                cache_dir=args.cache_dir,
            )
            # Preprocessing the datasets.
            column_names = dataset["train"].column_names

            # 6. Get the column names for input/target.
            if args.image_column is None:
                image_column = column_names[0]
                logger.info(f"image column defaulting to {image_column}")
            else:
                image_column = args.image_column
                if image_column not in column_names:
                    raise ValueError(
                        f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
            instance_images = dataset["train"][image_column]

            if args.caption_column is None:
                logger.info(
                    "No caption column provided, defaulting to instance_prompt for all images. If your dataset "
                    "contains captions/prompts for the images, make sure to specify the "
                    "column as --caption_column"
                )
                self.custom_instance_prompts = None
            else:
                if args.caption_column not in column_names:
                    raise ValueError(
                        f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
                custom_instance_prompts = dataset["train"][args.caption_column]
                # create final list of captions according to --repeats
                self.custom_instance_prompts = []
                for caption in custom_instance_prompts:
                    self.custom_instance_prompts.extend(itertools.repeat(caption, repeats))
        else:
            self.instance_data_root = Path(instance_data_root)
            if not self.instance_data_root.exists():
                raise ValueError("Instance images root doesn't exists.")
779

780
781
782
783
784
785
            instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())]
            self.custom_instance_prompts = None

        self.instance_images = []
        for img in instance_images:
            self.instance_images.extend(itertools.repeat(img, repeats))
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

        # image processing to prepare for using SD-XL micro-conditioning
        self.original_sizes = []
        self.crop_top_lefts = []
        self.pixel_values = []
        train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
        train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
        train_flip = transforms.RandomHorizontalFlip(p=1.0)
        train_transforms = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )
        for image in self.instance_images:
            image = exif_transpose(image)
            if not image.mode == "RGB":
                image = image.convert("RGB")
            self.original_sizes.append((image.height, image.width))
            image = train_resize(image)
            if args.random_flip and random.random() < 0.5:
                # flip
                image = train_flip(image)
            if args.center_crop:
                y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
                x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
                image = train_crop(image)
            else:
                y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
                image = crop(image, y1, x1, h, w)
            crop_top_left = (y1, x1)
            self.crop_top_lefts.append(crop_top_left)
            image = train_transforms(image)
            self.pixel_values.append(image)

821
        self.num_instance_images = len(self.instance_images)
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
850
851
852
853
854
855
        instance_image = self.pixel_values[index % self.num_instance_images]
        original_size = self.original_sizes[index % self.num_instance_images]
        crop_top_left = self.crop_top_lefts[index % self.num_instance_images]
        example["instance_images"] = instance_image
        example["original_size"] = original_size
        example["crop_top_left"] = crop_top_left
856

857
858
859
860
861
862
863
864
865
866
        if self.custom_instance_prompts:
            caption = self.custom_instance_prompts[index % self.num_instance_images]
            if caption:
                example["instance_prompt"] = caption
            else:
                example["instance_prompt"] = self.instance_prompt

        else:  # costum prompts were provided, but length does not match size of image dataset
            example["instance_prompt"] = self.instance_prompt

867
868
869
870
871
872
873
        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            class_image = exif_transpose(class_image)

            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
874
            example["class_prompt"] = self.class_prompt
875
876
877
878
879
880

        return example


def collate_fn(examples, with_prior_preservation=False):
    pixel_values = [example["instance_images"] for example in examples]
881
    prompts = [example["instance_prompt"] for example in examples]
882
883
    original_sizes = [example["original_size"] for example in examples]
    crop_top_lefts = [example["crop_top_left"] for example in examples]
884
885
886
887
888

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        pixel_values += [example["class_images"] for example in examples]
889
        prompts += [example["class_prompt"] for example in examples]
890
891
        original_sizes += [example["original_size"] for example in examples]
        crop_top_lefts += [example["crop_top_left"] for example in examples]
892
893
894
895

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

896
897
898
899
900
901
    batch = {
        "pixel_values": pixel_values,
        "prompts": prompts,
        "original_sizes": original_sizes,
        "crop_top_lefts": crop_top_lefts,
    }
902
903
904
905
    return batch


class PromptDataset(Dataset):
906
    """A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


922
923
924
925
926
927
928
929
930
931
932
933
def tokenize_prompt(tokenizer, prompt):
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    return text_input_ids


934
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
935
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
936
937
    prompt_embeds_list = []

938
939
940
941
942
943
944
    for i, text_encoder in enumerate(text_encoders):
        if tokenizers is not None:
            tokenizer = tokenizers[i]
            text_input_ids = tokenize_prompt(tokenizer, prompt)
        else:
            assert text_input_ids_list is not None
            text_input_ids = text_input_ids_list[i]
945
946

        prompt_embeds = text_encoder(
947
            text_input_ids.to(text_encoder.device), output_hidden_states=True, return_dict=False
948
949
950
951
        )

        # We are only ALWAYS interested in the pooled output of the final text encoder
        pooled_prompt_embeds = prompt_embeds[0]
952
        prompt_embeds = prompt_embeds[-1][-2]
953
954
955
956
957
958
959
960
961
962
        bs_embed, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
        prompt_embeds_list.append(prompt_embeds)

    prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
    return prompt_embeds, pooled_prompt_embeds


def main(args):
963
964
965
966
967
968
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

969
970
971
    if args.do_edm_style_training and args.snr_gamma is not None:
        raise ValueError("Min-SNR formulation is not supported when conducting EDM-style training.")

972
973
974
975
976
977
    if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

978
979
980
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
981
    kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
982
983
984
985
986
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
987
        kwargs_handlers=[kwargs],
988
989
    )

990
991
992
993
    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
1024
1025
            has_supported_fp16_accelerator = torch.cuda.is_available() or torch.backends.mps.is_available()
            torch_dtype = torch.float16 if has_supported_fp16_accelerator else torch.float32
1026
1027
1028
1029
1030
1031
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
1032
            pipeline = StableDiffusionXLPipeline.from_pretrained(
1033
1034
1035
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                revision=args.revision,
1036
                variant=args.variant,
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
1055
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load the tokenizers
    tokenizer_one = AutoTokenizer.from_pretrained(
1075
1076
1077
1078
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
        use_fast=False,
1079
1080
    )
    tokenizer_two = AutoTokenizer.from_pretrained(
1081
1082
1083
1084
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=args.revision,
        use_fast=False,
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    )

    # import correct text encoder classes
    text_encoder_cls_one = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision
    )
    text_encoder_cls_two = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
    )

    # Load scheduler and models
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    scheduler_type = determine_scheduler_type(args.pretrained_model_name_or_path, args.revision)
    if "EDM" in scheduler_type:
        args.do_edm_style_training = True
        noise_scheduler = EDMEulerScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
        logger.info("Performing EDM-style training!")
    elif args.do_edm_style_training:
        noise_scheduler = EulerDiscreteScheduler.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="scheduler"
        )
        logger.info("Performing EDM-style training!")
    else:
        noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

1109
    text_encoder_one = text_encoder_cls_one.from_pretrained(
1110
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
1111
1112
    )
    text_encoder_two = text_encoder_cls_two.from_pretrained(
1113
        args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
1114
    )
1115
1116
1117
1118
1119
1120
    vae_path = (
        args.pretrained_model_name_or_path
        if args.pretrained_vae_model_name_or_path is None
        else args.pretrained_vae_model_name_or_path
    )
    vae = AutoencoderKL.from_pretrained(
1121
1122
1123
1124
        vae_path,
        subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
        revision=args.revision,
        variant=args.variant,
1125
    )
1126
1127
1128
1129
1130
1131
    latents_mean = latents_std = None
    if hasattr(vae.config, "latents_mean") and vae.config.latents_mean is not None:
        latents_mean = torch.tensor(vae.config.latents_mean).view(1, 4, 1, 1)
    if hasattr(vae.config, "latents_std") and vae.config.latents_std is not None:
        latents_std = torch.tensor(vae.config.latents_std).view(1, 4, 1, 1)

1132
    unet = UNet2DConditionModel.from_pretrained(
1133
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
1134
1135
1136
1137
1138
1139
1140
1141
    )

    # We only train the additional adapter LoRA layers
    vae.requires_grad_(False)
    text_encoder_one.requires_grad_(False)
    text_encoder_two.requires_grad_(False)
    unet.requires_grad_(False)

1142
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
1143
1144
1145
1146
1147
1148
1149
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

1150
1151
1152
1153
1154
1155
    if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

1156
1157
    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
1158
1159
1160
1161

    # The VAE is always in float32 to avoid NaN losses.
    vae.to(accelerator.device, dtype=torch.float32)

1162
1163
1164
1165
1166
1167
1168
1169
1170
    text_encoder_one.to(accelerator.device, dtype=weight_dtype)
    text_encoder_two.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
1171
                logger.warning(
1172
1173
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, "
                    "please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
1174
1175
1176
1177
1178
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

1179
1180
1181
1182
1183
1184
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder_one.gradient_checkpointing_enable()
            text_encoder_two.gradient_checkpointing_enable()

1185
    # now we will add new LoRA weights to the attention layers
1186
    unet_lora_config = LoraConfig(
1187
        r=args.rank,
1188
        use_dora=args.use_dora,
1189
1190
1191
        lora_alpha=args.rank,
        init_lora_weights="gaussian",
        target_modules=["to_k", "to_q", "to_v", "to_out.0"],
1192
1193
    )
    unet.add_adapter(unet_lora_config)
1194
1195
1196
1197

    # The text encoder comes from 🤗 transformers, so we cannot directly modify it.
    # So, instead, we monkey-patch the forward calls of its attention-blocks.
    if args.train_text_encoder:
1198
        text_lora_config = LoraConfig(
1199
            r=args.rank,
1200
            use_dora=args.use_dora,
1201
1202
1203
            lora_alpha=args.rank,
            init_lora_weights="gaussian",
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
1204
        )
1205
1206
        text_encoder_one.add_adapter(text_lora_config)
        text_encoder_two.add_adapter(text_lora_config)
1207

1208
1209
1210
1211
1212
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

1213
1214
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
1215
1216
1217
1218
1219
1220
1221
1222
        if accelerator.is_main_process:
            # there are only two options here. Either are just the unet attn processor layers
            # or there are the unet and text encoder atten layers
            unet_lora_layers_to_save = None
            text_encoder_one_lora_layers_to_save = None
            text_encoder_two_lora_layers_to_save = None

            for model in models:
1223
                if isinstance(model, type(unwrap_model(unet))):
1224
                    unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
1225
                elif isinstance(model, type(unwrap_model(text_encoder_one))):
1226
1227
1228
                    text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers(
                        get_peft_model_state_dict(model)
                    )
1229
                elif isinstance(model, type(unwrap_model(text_encoder_two))):
1230
1231
1232
                    text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers(
                        get_peft_model_state_dict(model)
                    )
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            StableDiffusionXLPipeline.save_lora_weights(
                output_dir,
                unet_lora_layers=unet_lora_layers_to_save,
                text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
                text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
            )
1245
1246
1247

    def load_model_hook(models, input_dir):
        unet_ = None
1248
1249
        text_encoder_one_ = None
        text_encoder_two_ = None
1250
1251
1252
1253

        while len(models) > 0:
            model = models.pop()

1254
            if isinstance(model, type(unwrap_model(unet))):
1255
                unet_ = model
1256
            elif isinstance(model, type(unwrap_model(text_encoder_one))):
1257
                text_encoder_one_ = model
1258
            elif isinstance(model, type(unwrap_model(text_encoder_two))):
1259
                text_encoder_two_ = model
1260
1261
1262
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

1263
        lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
1264

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
        unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
        unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
        incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
        if incompatible_keys is not None:
            # check only for unexpected keys
            unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
            if unexpected_keys:
                logger.warning(
                    f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                    f" {unexpected_keys}. "
                )
1276

1277
1278
1279
1280
1281
        if args.train_text_encoder:
            # Do we need to call `scale_lora_layers()` here?
            _set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_)

            _set_state_dict_into_text_encoder(
1282
                lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_two_
1283
1284
1285
1286
1287
1288
1289
1290
1291
            )

        # Make sure the trainable params are in float32. This is again needed since the base models
        # are in `weight_dtype`. More details:
        # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
        if args.mixed_precision == "fp16":
            models = [unet_]
            if args.train_text_encoder:
                models.extend([text_encoder_one_, text_encoder_two_])
1292
1293
                # only upcast trainable parameters (LoRA) into fp32
                cast_training_params(models)
1294
1295
1296
1297
1298
1299

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
1300
    if args.allow_tf32 and torch.cuda.is_available():
1301
1302
1303
1304
1305
1306
1307
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

1308
1309
1310
1311
1312
    # Make sure the trainable params are in float32.
    if args.mixed_precision == "fp16":
        models = [unet]
        if args.train_text_encoder:
            models.extend([text_encoder_one, text_encoder_two])
1313
1314
1315

        # only upcast trainable parameters (LoRA) into fp32
        cast_training_params(models, dtype=torch.float32)
1316

1317
1318
1319
1320
1321
1322
    unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))

    if args.train_text_encoder:
        text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
        text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    # Optimization parameters
    unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate}
    if args.train_text_encoder:
        # different learning rate for text encoder and unet
        text_lora_parameters_one_with_lr = {
            "params": text_lora_parameters_one,
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        text_lora_parameters_two_with_lr = {
            "params": text_lora_parameters_two,
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        params_to_optimize = [
            unet_lora_parameters_with_lr,
            text_lora_parameters_one_with_lr,
            text_lora_parameters_two_with_lr,
        ]
    else:
        params_to_optimize = [unet_lora_parameters_with_lr]

    # Optimizer creation
    if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
1347
        logger.warning(
1348
1349
1350
1351
1352
1353
            f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
            "Defaulting to adamW"
        )
        args.optimizer = "adamw"

    if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
1354
        logger.warning(
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
            f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
            f"set to {args.optimizer.lower()}"
        )

    if args.optimizer.lower() == "adamw":
        if args.use_8bit_adam:
            try:
                import bitsandbytes as bnb
            except ImportError:
                raise ImportError(
                    "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
                )

            optimizer_class = bnb.optim.AdamW8bit
        else:
            optimizer_class = torch.optim.AdamW

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
        )

    if args.optimizer.lower() == "prodigy":
1380
        try:
1381
            import prodigyopt
1382
        except ImportError:
1383
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
1384

1385
        optimizer_class = prodigyopt.Prodigy
1386

1387
        if args.learning_rate <= 0.1:
1388
            logger.warning(
1389
1390
1391
                "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
            )
        if args.train_text_encoder and args.text_encoder_lr:
1392
            logger.warning(
1393
1394
1395
1396
1397
1398
1399
1400
1401
                f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:"
                f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
                f"When using prodigy only learning_rate is used as the initial learning rate."
            )
            # changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be
            # --learning_rate
            params_to_optimize[1]["lr"] = args.learning_rate
            params_to_optimize[2]["lr"] = args.learning_rate

1402
1403
1404
1405
        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
1406
            beta3=args.prodigy_beta3,
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=args.prodigy_decouple,
            use_bias_correction=args.prodigy_use_bias_correction,
            safeguard_warmup=args.prodigy_safeguard_warmup,
        )

    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_prompt=args.class_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_num=args.num_class_images,
        size=args.resolution,
        repeats=args.repeats,
        center_crop=args.center_crop,
1424
    )
1425
1426
1427
1428
1429
1430
1431

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
        num_workers=args.dataloader_num_workers,
1432
1433
    )

1434
    # Computes additional embeddings/ids required by the SDXL UNet.
1435
    # regular text embeddings (when `train_text_encoder` is not True)
1436
1437
    # pooled text embeddings
    # time ids
1438

1439
    def compute_time_ids(original_size, crops_coords_top_left):
1440
        # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
1441
        target_size = (args.resolution, args.resolution)
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids])
        add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
        return add_time_ids

    if not args.train_text_encoder:
        tokenizers = [tokenizer_one, tokenizer_two]
        text_encoders = [text_encoder_one, text_encoder_two]

        def compute_text_embeddings(prompt, text_encoders, tokenizers):
            with torch.no_grad():
                prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
                prompt_embeds = prompt_embeds.to(accelerator.device)
                pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
            return prompt_embeds, pooled_prompt_embeds

1458
1459
1460
1461
    # If no type of tuning is done on the text_encoder and custom instance prompts are NOT
    # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid
    # the redundant encoding.
    if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
1462
1463
1464
        instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings(
            args.instance_prompt, text_encoders, tokenizers
        )
1465

1466
    # Handle class prompt for prior-preservation.
1467
    if args.with_prior_preservation:
1468
1469
1470
1471
        if not args.train_text_encoder:
            class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings(
                args.class_prompt, text_encoders, tokenizers
            )
1472

1473
1474
    # Clear the memory here
    if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
1475
1476
        del tokenizers, text_encoders
        gc.collect()
1477
1478
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
1479

1480
1481
    # If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
    # pack the statically computed variables appropriately here. This is so that we don't
1482
1483
    # have to pass them to the dataloader.

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
    if not train_dataset.custom_instance_prompts:
        if not args.train_text_encoder:
            prompt_embeds = instance_prompt_hidden_states
            unet_add_text_embeds = instance_pooled_prompt_embeds
            if args.with_prior_preservation:
                prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0)
                unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0)
        # if we're optmizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the
        # batch prompts on all training steps
        else:
            tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt)
            tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt)
            if args.with_prior_preservation:
                class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt)
                class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt)
                tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0)
                tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0)
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1512
1513
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1514
1515
1516
1517
1518
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
1519
1520
1521
1522
1523
1524
1525
1526
    if args.train_text_encoder:
        unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1538
1539
        tracker_name = (
            "dreambooth-lora-sd-xl"
1540
            if "playground" not in args.pretrained_model_name_or_path
1541
1542
1543
            else "dreambooth-lora-playground"
        )
        accelerator.init_trackers(tracker_name, config=vars(args))
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1575
            initial_global_step = 0
1576
1577
1578
1579
1580
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1581
            initial_global_step = global_step
1582
1583
            first_epoch = global_step // num_update_steps_per_epoch

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1594

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
    def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
        sigmas = noise_scheduler.sigmas.to(device=accelerator.device, dtype=dtype)
        schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
        timesteps = timesteps.to(accelerator.device)

        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma

1607
1608
    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
1609
1610
1611
        if args.train_text_encoder:
            text_encoder_one.train()
            text_encoder_two.train()
Patrick von Platen's avatar
Patrick von Platen committed
1612

1613
            # set top parameter requires_grad = True for gradient checkpointing works
1614
1615
            accelerator.unwrap_model(text_encoder_one).text_model.embeddings.requires_grad_(True)
            accelerator.unwrap_model(text_encoder_two).text_model.embeddings.requires_grad_(True)
Patrick von Platen's avatar
Patrick von Platen committed
1616

1617
1618
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
1619
                pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
                prompts = batch["prompts"]

                # encode batch prompts when custom prompts are provided for each image -
                if train_dataset.custom_instance_prompts:
                    if not args.train_text_encoder:
                        prompt_embeds, unet_add_text_embeds = compute_text_embeddings(
                            prompts, text_encoders, tokenizers
                        )
                    else:
                        tokens_one = tokenize_prompt(tokenizer_one, prompts)
                        tokens_two = tokenize_prompt(tokenizer_two, prompts)
1631
1632

                # Convert images to latent space
1633
                model_input = vae.encode(pixel_values).latent_dist.sample()
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643

                if latents_mean is None and latents_std is None:
                    model_input = model_input * vae.config.scaling_factor
                    if args.pretrained_vae_model_name_or_path is None:
                        model_input = model_input.to(weight_dtype)
                else:
                    latents_mean = latents_mean.to(device=model_input.device, dtype=model_input.dtype)
                    latents_std = latents_std.to(device=model_input.device, dtype=model_input.dtype)
                    model_input = (model_input - latents_mean) * vae.config.scaling_factor / latents_std
                    model_input = model_input.to(dtype=weight_dtype)
1644
1645
1646
1647

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(model_input)
                bsz = model_input.shape[0]
1648

1649
                # Sample a random timestep for each image
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
                if not args.do_edm_style_training:
                    timesteps = torch.randint(
                        0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                    )
                    timesteps = timesteps.long()
                else:
                    # in EDM formulation, the model is conditioned on the pre-conditioned noise levels
                    # instead of discrete timesteps, so here we sample indices to get the noise levels
                    # from `scheduler.timesteps`
                    indices = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,))
                    timesteps = noise_scheduler.timesteps[indices].to(device=model_input.device)
1661
1662
1663
1664

                # Add noise to the model input according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1665
1666
1667
1668
1669
1670
1671
1672
1673
                # For EDM-style training, we first obtain the sigmas based on the continuous timesteps.
                # We then precondition the final model inputs based on these sigmas instead of the timesteps.
                # Follow: Section 5 of https://arxiv.org/abs/2206.00364.
                if args.do_edm_style_training:
                    sigmas = get_sigmas(timesteps, len(noisy_model_input.shape), noisy_model_input.dtype)
                    if "EDM" in scheduler_type:
                        inp_noisy_latents = noise_scheduler.precondition_inputs(noisy_model_input, sigmas)
                    else:
                        inp_noisy_latents = noisy_model_input / ((sigmas**2 + 1) ** 0.5)
1674

1675
1676
1677
1678
1679
1680
1681
1682
                # time ids
                add_time_ids = torch.cat(
                    [
                        compute_time_ids(original_size=s, crops_coords_top_left=c)
                        for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])
                    ]
                )

1683
1684
1685
1686
1687
                # Calculate the elements to repeat depending on the use of prior-preservation and custom captions.
                if not train_dataset.custom_instance_prompts:
                    elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz
                else:
                    elems_to_repeat_text_embeds = 1
1688

1689
                # Predict the noise residual
1690
1691
                if not args.train_text_encoder:
                    unet_added_conditions = {
1692
                        "time_ids": add_time_ids,
1693
                        "text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
1694
                    }
1695
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
1696
                    model_pred = unet(
1697
                        inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
1698
                        timesteps,
1699
                        prompt_embeds_input,
1700
                        added_cond_kwargs=unet_added_conditions,
1701
1702
                        return_dict=False,
                    )[0]
1703
                else:
1704
                    unet_added_conditions = {"time_ids": add_time_ids}
1705
1706
1707
1708
1709
1710
                    prompt_embeds, pooled_prompt_embeds = encode_prompt(
                        text_encoders=[text_encoder_one, text_encoder_two],
                        tokenizers=None,
                        prompt=None,
                        text_input_ids_list=[tokens_one, tokens_two],
                    )
1711
1712
1713
1714
                    unet_added_conditions.update(
                        {"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
                    )
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
1715
                    model_pred = unet(
1716
                        inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
1717
1718
1719
1720
1721
                        timesteps,
                        prompt_embeds_input,
                        added_cond_kwargs=unet_added_conditions,
                        return_dict=False,
                    )[0]
1722

1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
                weighting = None
                if args.do_edm_style_training:
                    # Similar to the input preconditioning, the model predictions are also preconditioned
                    # on noised model inputs (before preconditioning) and the sigmas.
                    # Follow: Section 5 of https://arxiv.org/abs/2206.00364.
                    if "EDM" in scheduler_type:
                        model_pred = noise_scheduler.precondition_outputs(noisy_model_input, model_pred, sigmas)
                    else:
                        if noise_scheduler.config.prediction_type == "epsilon":
                            model_pred = model_pred * (-sigmas) + noisy_model_input
                        elif noise_scheduler.config.prediction_type == "v_prediction":
                            model_pred = model_pred * (-sigmas / (sigmas**2 + 1) ** 0.5) + (
                                noisy_model_input / (sigmas**2 + 1)
                            )
                    # We are not doing weighting here because it tends result in numerical problems.
                    # See: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051
                    # There might be other alternatives for weighting as well:
                    # https://github.com/huggingface/diffusers/pull/7126#discussion_r1505404686
                    if "EDM" not in scheduler_type:
                        weighting = (sigmas**-2.0).float()

1744
1745
                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
1746
                    target = model_input if args.do_edm_style_training else noise
1747
                elif noise_scheduler.config.prediction_type == "v_prediction":
1748
1749
1750
1751
1752
                    target = (
                        model_input
                        if args.do_edm_style_training
                        else noise_scheduler.get_velocity(model_input, noise, timesteps)
                    )
1753
1754
1755
1756
1757
1758
1759
1760
1761
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute prior loss
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
                    if weighting is not None:
                        prior_loss = torch.mean(
                            (weighting.float() * (model_pred_prior.float() - target_prior.float()) ** 2).reshape(
                                target_prior.shape[0], -1
                            ),
                            1,
                        )
                        prior_loss = prior_loss.mean()
                    else:
                        prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1772

1773
                if args.snr_gamma is None:
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
                    if weighting is not None:
                        loss = torch.mean(
                            (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(
                                target.shape[0], -1
                            ),
                            1,
                        )
                        loss = loss.mean()
                    else:
                        loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
                    snr = compute_snr(noise_scheduler, timesteps)
                    base_weight = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
                    )

                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
                        mse_loss_weights = base_weight + 1
                    else:
                        # Epsilon and sample both use the same loss weights.
                        mse_loss_weights = base_weight

                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()

                if args.with_prior_preservation:
1805
1806
1807
1808
1809
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
                if accelerator.sync_gradients:
1810
1811
1812
1813
1814
                    params_to_clip = (
                        itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
                        if args.train_text_encoder
                        else unet_lora_parameters
                    )
1815
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1816

1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                # create pipeline
1862
1863
                if not args.train_text_encoder:
                    text_encoder_one = text_encoder_cls_one.from_pretrained(
1864
1865
1866
1867
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder",
                        revision=args.revision,
                        variant=args.variant,
1868
1869
                    )
                    text_encoder_two = text_encoder_cls_two.from_pretrained(
1870
1871
1872
1873
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder_2",
                        revision=args.revision,
                        variant=args.variant,
1874
1875
                    )
                pipeline = StableDiffusionXLPipeline.from_pretrained(
1876
                    args.pretrained_model_name_or_path,
1877
                    vae=vae,
1878
1879
                    text_encoder=accelerator.unwrap_model(text_encoder_one),
                    text_encoder_2=accelerator.unwrap_model(text_encoder_two),
1880
1881
                    unet=accelerator.unwrap_model(unet),
                    revision=args.revision,
1882
                    variant=args.variant,
1883
1884
1885
1886
                    torch_dtype=weight_dtype,
                )
                pipeline_args = {"prompt": args.validation_prompt}

1887
1888
1889
1890
1891
1892
1893
                images = log_validation(
                    pipeline,
                    args,
                    accelerator,
                    pipeline_args,
                    epoch,
                )
1894
1895
1896
1897

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
1898
        unet = unwrap_model(unet)
1899
        unet = unet.to(torch.float32)
1900
        unet_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))
1901

1902
        if args.train_text_encoder:
1903
            text_encoder_one = unwrap_model(text_encoder_one)
1904
1905
1906
            text_encoder_lora_layers = convert_state_dict_to_diffusers(
                get_peft_model_state_dict(text_encoder_one.to(torch.float32))
            )
1907
            text_encoder_two = unwrap_model(text_encoder_two)
1908
1909
1910
            text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
                get_peft_model_state_dict(text_encoder_two.to(torch.float32))
            )
1911
1912
1913
1914
1915
        else:
            text_encoder_lora_layers = None
            text_encoder_2_lora_layers = None

        StableDiffusionXLPipeline.save_lora_weights(
1916
1917
            save_directory=args.output_dir,
            unet_lora_layers=unet_lora_layers,
1918
1919
            text_encoder_lora_layers=text_encoder_lora_layers,
            text_encoder_2_lora_layers=text_encoder_2_lora_layers,
1920
        )
1921
1922
1923
1924
1925
        if args.output_kohya_format:
            lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors")
            peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict)
            kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict)
            save_file(kohya_state_dict, f"{args.output_dir}/pytorch_lora_weights_kohya.safetensors")
1926
1927
1928

        # Final inference
        # Load previous pipeline
1929
1930
1931
1932
        vae = AutoencoderKL.from_pretrained(
            vae_path,
            subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
            revision=args.revision,
1933
            variant=args.variant,
1934
1935
1936
            torch_dtype=weight_dtype,
        )
        pipeline = StableDiffusionXLPipeline.from_pretrained(
1937
1938
1939
1940
1941
            args.pretrained_model_name_or_path,
            vae=vae,
            revision=args.revision,
            variant=args.variant,
            torch_dtype=weight_dtype,
1942
1943
1944
1945
1946
1947
1948
1949
        )

        # load attention processors
        pipeline.load_lora_weights(args.output_dir)

        # run inference
        images = []
        if args.validation_prompt and args.num_validation_images > 0:
1950
1951
1952
1953
1954
1955
1956
            pipeline_args = {"prompt": args.validation_prompt, "num_inference_steps": 25}
            images = log_validation(
                pipeline,
                args,
                accelerator,
                pipeline_args,
                epoch,
1957
                is_final_validation=True,
1958
            )
1959
1960
1961
1962

        if args.push_to_hub:
            save_model_card(
                repo_id,
1963
                use_dora=args.use_dora,
1964
1965
1966
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
1967
1968
                instance_prompt=args.instance_prompt,
                validation_prompt=args.validation_prompt,
1969
                repo_folder=args.output_dir,
1970
                vae_path=args.pretrained_vae_model_name_or_path,
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
            )
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)