train_dreambooth_lora_sdxl.py 82.3 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import gc
18
import itertools
19
import json
20
21
22
import logging
import math
import os
23
import random
24
25
26
27
28
29
30
31
32
33
34
import shutil
import warnings
from pathlib import Path

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
35
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
36
from huggingface_hub import create_repo, hf_hub_download, upload_folder
37
from huggingface_hub.utils import insecure_hashlib
38
from packaging import version
39
from peft import LoraConfig, set_peft_model_state_dict
40
from peft.utils import get_peft_model_state_dict
41
42
from PIL import Image
from PIL.ImageOps import exif_transpose
43
from safetensors.torch import load_file, save_file
44
45
from torch.utils.data import Dataset
from torchvision import transforms
46
from torchvision.transforms.functional import crop
47
48
49
50
51
52
53
54
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DPMSolverMultistepScheduler,
55
56
    EDMEulerScheduler,
    EulerDiscreteScheduler,
57
    StableDiffusionXLPipeline,
58
59
    UNet2DConditionModel,
)
60
from diffusers.loaders import LoraLoaderMixin
61
from diffusers.optimization import get_scheduler
62
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
63
64
from diffusers.utils import (
    check_min_version,
65
    convert_all_state_dict_to_peft,
66
    convert_state_dict_to_diffusers,
67
    convert_state_dict_to_kohya,
68
69
70
    convert_unet_state_dict_to_peft,
    is_wandb_available,
)
71
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
72
from diffusers.utils.import_utils import is_xformers_available
73
from diffusers.utils.torch_utils import is_compiled_module
74
75


76
77
78
if is_wandb_available():
    import wandb

79
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
80
check_min_version("0.28.0.dev0")
81
82
83
84

logger = get_logger(__name__)


85
86
87
88
89
90
91
92
93
94
95
96
97
98
def determine_scheduler_type(pretrained_model_name_or_path, revision):
    model_index_filename = "model_index.json"
    if os.path.isdir(pretrained_model_name_or_path):
        model_index = os.path.join(pretrained_model_name_or_path, model_index_filename)
    else:
        model_index = hf_hub_download(
            repo_id=pretrained_model_name_or_path, filename=model_index_filename, revision=revision
        )

    with open(model_index, "r") as f:
        scheduler_type = json.load(f)["scheduler"][1]
    return scheduler_type


99
def save_model_card(
100
    repo_id: str,
101
    use_dora: bool,
102
    images=None,
103
    base_model: str = None,
104
    train_text_encoder=False,
105
106
    instance_prompt=None,
    validation_prompt=None,
107
108
    repo_folder=None,
    vae_path=None,
109
):
110
111
112
113
114
115
116
117
118
    widget_dict = []
    if images is not None:
        for i, image in enumerate(images):
            image.save(os.path.join(repo_folder, f"image_{i}.png"))
            widget_dict.append(
                {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}}
            )

    model_description = f"""
119
# {'SDXL' if 'playground' not in base_model else 'Playground'} LoRA DreamBooth - {repo_id}
120

121
<Gallery />
122

123
## Model description
124

125
These are {repo_id} LoRA adaption weights for {base_model}.
126

127
The weights were trained  using [DreamBooth](https://dreambooth.github.io/).
128

129
LoRA for the text encoder was enabled: {train_text_encoder}.
130

131
Special VAE used for training: {vae_path}.
132
133
134
135
136
137
138
139
140
141
142

## Trigger words

You should use {instance_prompt} to trigger the image generation.

## Download model

Weights for this model are available in Safetensors format.

[Download]({repo_id}/tree/main) them in the Files & versions tab.

143
"""
144
    if "playground" in base_model:
145
146
147
148
        model_description += """\n
## License

Please adhere to the licensing terms as described [here](https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic/blob/main/LICENSE.md).
149
"""
150
151
152
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
153
        license="openrail++" if "playground" not in base_model else "playground-v2dot5-community",
154
        base_model=base_model,
155
        prompt=instance_prompt,
156
157
158
159
160
161
        model_description=model_description,
        widget=widget_dict,
    )
    tags = [
        "text-to-image",
        "text-to-image",
162
        "diffusers-training",
163
        "diffusers",
164
        "lora" if not use_dora else "dora",
165
166
        "template:sd-lora",
    ]
167
    if "playground" in base_model:
168
169
170
        tags.extend(["playground", "playground-diffusers"])
    else:
        tags.extend(["stable-diffusion-xl", "stable-diffusion-xl-diffusers"])
171

172
    model_card = populate_model_card(model_card, tags=tags)
173
    model_card.save(os.path.join(repo_folder, "README.md"))
174
175


176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def log_validation(
    pipeline,
    args,
    accelerator,
    pipeline_args,
    epoch,
    is_final_validation=False,
):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

192
193
194
    if not args.do_edm_style_training:
        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type
195

196
197
            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"
198

199
            scheduler_args["variance_type"] = variance_type
200

201
        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
202
203
204
205
206
207

    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
208
209
    # Currently the context determination is a bit hand-wavy. We can improve it in the future if there's a better
    # way to condition it. Reference: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051
210
211
212
213
214
215
216
    enable_autocast = True
    if torch.backends.mps.is_available() or (
        accelerator.mixed_precision == "fp16" or accelerator.mixed_precision == "bf16"
    ):
        enable_autocast = False
    if "playground" in args.pretrained_model_name_or_path:
        enable_autocast = False
217

218
219
220
221
    with torch.autocast(
        accelerator.device.type,
        enabled=enable_autocast,
    ):
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)]

    for tracker in accelerator.trackers:
        phase_name = "test" if is_final_validation else "validation"
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    phase_name: [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
239
240
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
241
242
243
244

    return images


245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection

        return CLIPTextModelWithProjection
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
274
275
276
277
278
279
    parser.add_argument(
        "--pretrained_vae_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
    )
280
281
282
283
284
285
286
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
287
288
289
290
291
292
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
309
310
311
312
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
313
314
315
316
317
318
319
320
        help=("A folder containing the training data. "),
    )

    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
321
    )
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

    parser.add_argument(
        "--image_column",
        type=str,
        default="image",
        help="The column of the dataset containing the target image. By "
        "default, the standard Image Dataset maps out 'file_name' "
        "to 'image'.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default=None,
        help="The column of the dataset containing the instance prompt for each image",
    )

    parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")

340
341
342
343
344
345
346
347
348
349
350
351
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
352
        help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
381
382
383
384
385
386
    parser.add_argument(
        "--do_edm_style_training",
        default=False,
        action="store_true",
        help="Flag to conduct training using the EDM formulation as introduced in https://arxiv.org/abs/2206.00364.",
    )
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
409
410
411
412
413
    parser.add_argument(
        "--output_kohya_format",
        action="store_true",
        help="Flag to additionally generate final state dict in the Kohya format so that it becomes compatible with A111, Comfy, Kohya, etc.",
    )
414
415
416
417
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
418
        default=1024,
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
433
434
435
436
437
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
495
        default=1e-4,
496
497
        help="Initial learning rate (after the potential warmup period) to use.",
    )
498
499
500
501
502
503
504

    parser.add_argument(
        "--text_encoder_lr",
        type=float,
        default=5e-6,
        help="Text encoder learning rate to use.",
    )
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
520
521
522
523
524
525
526
527

    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

    parser.add_argument(
        "--optimizer",
        type=str,
        default="AdamW",
        help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
    )

    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
    )

    parser.add_argument(
        "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--prodigy_beta3",
        type=float,
        default=None,
        help="coefficients for computing the Prodidy stepsize using running averages. If set to None, "
        "uses the value of square root of beta2. Ignored if optimizer is adamW",
    )
    parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
575
    parser.add_argument(
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
    )

    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
    )

    parser.add_argument(
        "--prodigy_use_bias_correction",
        type=bool,
        default=True,
        help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
    )
    parser.add_argument(
        "--prodigy_safeguard_warmup",
        type=bool,
        default=True,
        help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
        "Ignored if optimizer is adamW",
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    )
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
659
660
661
662
663
664
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
665
666
667
668
669
670
671
672
673
    parser.add_argument(
        "--use_dora",
        action="store_true",
        default=False,
        help=(
            "Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
            "Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
        ),
    )
674
675
676
677
678
679

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

680
681
682
683
684
685
    if args.dataset_name is None and args.instance_data_dir is None:
        raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`")

    if args.dataset_name is not None and args.instance_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`")

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
708
    It pre-processes the images.
709
710
711
712
713
    """

    def __init__(
        self,
        instance_data_root,
714
715
        instance_prompt,
        class_prompt,
716
717
718
        class_data_root=None,
        class_num=None,
        size=1024,
719
        repeats=1,
720
721
722
723
724
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        self.instance_prompt = instance_prompt
        self.custom_instance_prompts = None
        self.class_prompt = class_prompt

        # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory,
        # we load the training data using load_dataset
        if args.dataset_name is not None:
            try:
                from datasets import load_dataset
            except ImportError:
                raise ImportError(
                    "You are trying to load your data using the datasets library. If you wish to train using custom "
                    "captions please install the datasets library: `pip install datasets`. If you wish to load a "
                    "local folder containing images only, specify --instance_data_dir instead."
                )
            # Downloading and loading a dataset from the hub.
            # See more about loading custom images at
            # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
            dataset = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                cache_dir=args.cache_dir,
            )
            # Preprocessing the datasets.
            column_names = dataset["train"].column_names

            # 6. Get the column names for input/target.
            if args.image_column is None:
                image_column = column_names[0]
                logger.info(f"image column defaulting to {image_column}")
            else:
                image_column = args.image_column
                if image_column not in column_names:
                    raise ValueError(
                        f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
            instance_images = dataset["train"][image_column]

            if args.caption_column is None:
                logger.info(
                    "No caption column provided, defaulting to instance_prompt for all images. If your dataset "
                    "contains captions/prompts for the images, make sure to specify the "
                    "column as --caption_column"
                )
                self.custom_instance_prompts = None
            else:
                if args.caption_column not in column_names:
                    raise ValueError(
                        f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
                custom_instance_prompts = dataset["train"][args.caption_column]
                # create final list of captions according to --repeats
                self.custom_instance_prompts = []
                for caption in custom_instance_prompts:
                    self.custom_instance_prompts.extend(itertools.repeat(caption, repeats))
        else:
            self.instance_data_root = Path(instance_data_root)
            if not self.instance_data_root.exists():
                raise ValueError("Instance images root doesn't exists.")
784

785
786
787
788
789
790
            instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())]
            self.custom_instance_prompts = None

        self.instance_images = []
        for img in instance_images:
            self.instance_images.extend(itertools.repeat(img, repeats))
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

        # image processing to prepare for using SD-XL micro-conditioning
        self.original_sizes = []
        self.crop_top_lefts = []
        self.pixel_values = []
        train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
        train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
        train_flip = transforms.RandomHorizontalFlip(p=1.0)
        train_transforms = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )
        for image in self.instance_images:
            image = exif_transpose(image)
            if not image.mode == "RGB":
                image = image.convert("RGB")
            self.original_sizes.append((image.height, image.width))
            image = train_resize(image)
            if args.random_flip and random.random() < 0.5:
                # flip
                image = train_flip(image)
            if args.center_crop:
                y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
                x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
                image = train_crop(image)
            else:
                y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
                image = crop(image, y1, x1, h, w)
            crop_top_left = (y1, x1)
            self.crop_top_lefts.append(crop_top_left)
            image = train_transforms(image)
            self.pixel_values.append(image)

826
        self.num_instance_images = len(self.instance_images)
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
855
856
857
858
859
860
        instance_image = self.pixel_values[index % self.num_instance_images]
        original_size = self.original_sizes[index % self.num_instance_images]
        crop_top_left = self.crop_top_lefts[index % self.num_instance_images]
        example["instance_images"] = instance_image
        example["original_size"] = original_size
        example["crop_top_left"] = crop_top_left
861

862
863
864
865
866
867
868
869
870
871
        if self.custom_instance_prompts:
            caption = self.custom_instance_prompts[index % self.num_instance_images]
            if caption:
                example["instance_prompt"] = caption
            else:
                example["instance_prompt"] = self.instance_prompt

        else:  # costum prompts were provided, but length does not match size of image dataset
            example["instance_prompt"] = self.instance_prompt

872
873
874
875
876
877
878
        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            class_image = exif_transpose(class_image)

            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
879
            example["class_prompt"] = self.class_prompt
880
881
882
883
884
885

        return example


def collate_fn(examples, with_prior_preservation=False):
    pixel_values = [example["instance_images"] for example in examples]
886
    prompts = [example["instance_prompt"] for example in examples]
887
888
    original_sizes = [example["original_size"] for example in examples]
    crop_top_lefts = [example["crop_top_left"] for example in examples]
889
890
891
892
893

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        pixel_values += [example["class_images"] for example in examples]
894
        prompts += [example["class_prompt"] for example in examples]
895
896
        original_sizes += [example["original_size"] for example in examples]
        crop_top_lefts += [example["crop_top_left"] for example in examples]
897
898
899
900

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

901
902
903
904
905
906
    batch = {
        "pixel_values": pixel_values,
        "prompts": prompts,
        "original_sizes": original_sizes,
        "crop_top_lefts": crop_top_lefts,
    }
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
    return batch


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


927
928
929
930
931
932
933
934
935
936
937
938
def tokenize_prompt(tokenizer, prompt):
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    return text_input_ids


939
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
940
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
941
942
    prompt_embeds_list = []

943
944
945
946
947
948
949
    for i, text_encoder in enumerate(text_encoders):
        if tokenizers is not None:
            tokenizer = tokenizers[i]
            text_input_ids = tokenize_prompt(tokenizer, prompt)
        else:
            assert text_input_ids_list is not None
            text_input_ids = text_input_ids_list[i]
950
951

        prompt_embeds = text_encoder(
952
            text_input_ids.to(text_encoder.device), output_hidden_states=True, return_dict=False
953
954
955
956
        )

        # We are only ALWAYS interested in the pooled output of the final text encoder
        pooled_prompt_embeds = prompt_embeds[0]
957
        prompt_embeds = prompt_embeds[-1][-2]
958
959
960
961
962
963
964
965
966
967
        bs_embed, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
        prompt_embeds_list.append(prompt_embeds)

    prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
    return prompt_embeds, pooled_prompt_embeds


def main(args):
968
969
970
971
972
973
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

974
975
976
    if args.do_edm_style_training and args.snr_gamma is not None:
        raise ValueError("Min-SNR formulation is not supported when conducting EDM-style training.")

977
978
979
980
981
982
    if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

983
984
985
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
986
    kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
987
988
989
990
991
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
992
        kwargs_handlers=[kwargs],
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    )

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
1025
1026
            has_supported_fp16_accelerator = torch.cuda.is_available() or torch.backends.mps.is_available()
            torch_dtype = torch.float16 if has_supported_fp16_accelerator else torch.float32
1027
1028
1029
1030
1031
1032
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
1033
            pipeline = StableDiffusionXLPipeline.from_pretrained(
1034
1035
1036
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                revision=args.revision,
1037
                variant=args.variant,
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
1056
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load the tokenizers
    tokenizer_one = AutoTokenizer.from_pretrained(
1076
1077
1078
1079
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
        use_fast=False,
1080
1081
    )
    tokenizer_two = AutoTokenizer.from_pretrained(
1082
1083
1084
1085
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=args.revision,
        use_fast=False,
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    )

    # import correct text encoder classes
    text_encoder_cls_one = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision
    )
    text_encoder_cls_two = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
    )

    # Load scheduler and models
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    scheduler_type = determine_scheduler_type(args.pretrained_model_name_or_path, args.revision)
    if "EDM" in scheduler_type:
        args.do_edm_style_training = True
        noise_scheduler = EDMEulerScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
        logger.info("Performing EDM-style training!")
    elif args.do_edm_style_training:
        noise_scheduler = EulerDiscreteScheduler.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="scheduler"
        )
        logger.info("Performing EDM-style training!")
    else:
        noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

1110
    text_encoder_one = text_encoder_cls_one.from_pretrained(
1111
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
1112
1113
    )
    text_encoder_two = text_encoder_cls_two.from_pretrained(
1114
        args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
1115
    )
1116
1117
1118
1119
1120
1121
    vae_path = (
        args.pretrained_model_name_or_path
        if args.pretrained_vae_model_name_or_path is None
        else args.pretrained_vae_model_name_or_path
    )
    vae = AutoencoderKL.from_pretrained(
1122
1123
1124
1125
        vae_path,
        subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
        revision=args.revision,
        variant=args.variant,
1126
    )
1127
1128
1129
1130
1131
1132
    latents_mean = latents_std = None
    if hasattr(vae.config, "latents_mean") and vae.config.latents_mean is not None:
        latents_mean = torch.tensor(vae.config.latents_mean).view(1, 4, 1, 1)
    if hasattr(vae.config, "latents_std") and vae.config.latents_std is not None:
        latents_std = torch.tensor(vae.config.latents_std).view(1, 4, 1, 1)

1133
    unet = UNet2DConditionModel.from_pretrained(
1134
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
1135
1136
1137
1138
1139
1140
1141
1142
    )

    # We only train the additional adapter LoRA layers
    vae.requires_grad_(False)
    text_encoder_one.requires_grad_(False)
    text_encoder_two.requires_grad_(False)
    unet.requires_grad_(False)

1143
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
1144
1145
1146
1147
1148
1149
1150
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

1151
1152
1153
1154
1155
1156
    if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

1157
1158
    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
1159
1160
1161
1162

    # The VAE is always in float32 to avoid NaN losses.
    vae.to(accelerator.device, dtype=torch.float32)

1163
1164
1165
1166
1167
1168
1169
1170
1171
    text_encoder_one.to(accelerator.device, dtype=weight_dtype)
    text_encoder_two.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
1172
                logger.warning(
1173
1174
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, "
                    "please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
1175
1176
1177
1178
1179
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

1180
1181
1182
1183
1184
1185
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder_one.gradient_checkpointing_enable()
            text_encoder_two.gradient_checkpointing_enable()

1186
    # now we will add new LoRA weights to the attention layers
1187
    unet_lora_config = LoraConfig(
1188
        r=args.rank,
1189
        use_dora=args.use_dora,
1190
1191
1192
        lora_alpha=args.rank,
        init_lora_weights="gaussian",
        target_modules=["to_k", "to_q", "to_v", "to_out.0"],
1193
1194
    )
    unet.add_adapter(unet_lora_config)
1195
1196
1197
1198

    # The text encoder comes from 🤗 transformers, so we cannot directly modify it.
    # So, instead, we monkey-patch the forward calls of its attention-blocks.
    if args.train_text_encoder:
1199
        text_lora_config = LoraConfig(
1200
            r=args.rank,
1201
            use_dora=args.use_dora,
1202
1203
1204
            lora_alpha=args.rank,
            init_lora_weights="gaussian",
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
1205
        )
1206
1207
        text_encoder_one.add_adapter(text_lora_config)
        text_encoder_two.add_adapter(text_lora_config)
1208

1209
1210
1211
1212
1213
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

1214
1215
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
1216
1217
1218
1219
1220
1221
1222
1223
        if accelerator.is_main_process:
            # there are only two options here. Either are just the unet attn processor layers
            # or there are the unet and text encoder atten layers
            unet_lora_layers_to_save = None
            text_encoder_one_lora_layers_to_save = None
            text_encoder_two_lora_layers_to_save = None

            for model in models:
1224
                if isinstance(model, type(unwrap_model(unet))):
1225
                    unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
1226
                elif isinstance(model, type(unwrap_model(text_encoder_one))):
1227
1228
1229
                    text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers(
                        get_peft_model_state_dict(model)
                    )
1230
                elif isinstance(model, type(unwrap_model(text_encoder_two))):
1231
1232
1233
                    text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers(
                        get_peft_model_state_dict(model)
                    )
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            StableDiffusionXLPipeline.save_lora_weights(
                output_dir,
                unet_lora_layers=unet_lora_layers_to_save,
                text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
                text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
            )
1246
1247
1248

    def load_model_hook(models, input_dir):
        unet_ = None
1249
1250
        text_encoder_one_ = None
        text_encoder_two_ = None
1251
1252
1253
1254

        while len(models) > 0:
            model = models.pop()

1255
            if isinstance(model, type(unwrap_model(unet))):
1256
                unet_ = model
1257
            elif isinstance(model, type(unwrap_model(text_encoder_one))):
1258
                text_encoder_one_ = model
1259
            elif isinstance(model, type(unwrap_model(text_encoder_two))):
1260
                text_encoder_two_ = model
1261
1262
1263
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

1264
        lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
1265

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
        unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
        unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
        incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
        if incompatible_keys is not None:
            # check only for unexpected keys
            unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
            if unexpected_keys:
                logger.warning(
                    f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                    f" {unexpected_keys}. "
                )
1277

1278
1279
1280
1281
1282
        if args.train_text_encoder:
            # Do we need to call `scale_lora_layers()` here?
            _set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_)

            _set_state_dict_into_text_encoder(
1283
                lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_two_
1284
1285
1286
1287
1288
1289
1290
1291
1292
            )

        # Make sure the trainable params are in float32. This is again needed since the base models
        # are in `weight_dtype`. More details:
        # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
        if args.mixed_precision == "fp16":
            models = [unet_]
            if args.train_text_encoder:
                models.extend([text_encoder_one_, text_encoder_two_])
1293
1294
                # only upcast trainable parameters (LoRA) into fp32
                cast_training_params(models)
1295
1296
1297
1298
1299
1300

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
1301
    if args.allow_tf32 and torch.cuda.is_available():
1302
1303
1304
1305
1306
1307
1308
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

1309
1310
1311
1312
1313
    # Make sure the trainable params are in float32.
    if args.mixed_precision == "fp16":
        models = [unet]
        if args.train_text_encoder:
            models.extend([text_encoder_one, text_encoder_two])
1314
1315
1316

        # only upcast trainable parameters (LoRA) into fp32
        cast_training_params(models, dtype=torch.float32)
1317

1318
1319
1320
1321
1322
1323
    unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))

    if args.train_text_encoder:
        text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
        text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    # Optimization parameters
    unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate}
    if args.train_text_encoder:
        # different learning rate for text encoder and unet
        text_lora_parameters_one_with_lr = {
            "params": text_lora_parameters_one,
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        text_lora_parameters_two_with_lr = {
            "params": text_lora_parameters_two,
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        params_to_optimize = [
            unet_lora_parameters_with_lr,
            text_lora_parameters_one_with_lr,
            text_lora_parameters_two_with_lr,
        ]
    else:
        params_to_optimize = [unet_lora_parameters_with_lr]

    # Optimizer creation
    if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
1348
        logger.warning(
1349
1350
1351
1352
1353
1354
            f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
            "Defaulting to adamW"
        )
        args.optimizer = "adamw"

    if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
1355
        logger.warning(
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
            f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
            f"set to {args.optimizer.lower()}"
        )

    if args.optimizer.lower() == "adamw":
        if args.use_8bit_adam:
            try:
                import bitsandbytes as bnb
            except ImportError:
                raise ImportError(
                    "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
                )

            optimizer_class = bnb.optim.AdamW8bit
        else:
            optimizer_class = torch.optim.AdamW

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
        )

    if args.optimizer.lower() == "prodigy":
1381
        try:
1382
            import prodigyopt
1383
        except ImportError:
1384
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
1385

1386
        optimizer_class = prodigyopt.Prodigy
1387

1388
        if args.learning_rate <= 0.1:
1389
            logger.warning(
1390
1391
1392
                "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
            )
        if args.train_text_encoder and args.text_encoder_lr:
1393
            logger.warning(
1394
1395
1396
1397
1398
1399
1400
1401
1402
                f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:"
                f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
                f"When using prodigy only learning_rate is used as the initial learning rate."
            )
            # changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be
            # --learning_rate
            params_to_optimize[1]["lr"] = args.learning_rate
            params_to_optimize[2]["lr"] = args.learning_rate

1403
1404
1405
1406
        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
1407
            beta3=args.prodigy_beta3,
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=args.prodigy_decouple,
            use_bias_correction=args.prodigy_use_bias_correction,
            safeguard_warmup=args.prodigy_safeguard_warmup,
        )

    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_prompt=args.class_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_num=args.num_class_images,
        size=args.resolution,
        repeats=args.repeats,
        center_crop=args.center_crop,
1425
    )
1426
1427
1428
1429
1430
1431
1432

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
        num_workers=args.dataloader_num_workers,
1433
1434
    )

1435
    # Computes additional embeddings/ids required by the SDXL UNet.
1436
    # regular text embeddings (when `train_text_encoder` is not True)
1437
1438
    # pooled text embeddings
    # time ids
1439

1440
    def compute_time_ids(original_size, crops_coords_top_left):
1441
        # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
1442
        target_size = (args.resolution, args.resolution)
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids])
        add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
        return add_time_ids

    if not args.train_text_encoder:
        tokenizers = [tokenizer_one, tokenizer_two]
        text_encoders = [text_encoder_one, text_encoder_two]

        def compute_text_embeddings(prompt, text_encoders, tokenizers):
            with torch.no_grad():
                prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
                prompt_embeds = prompt_embeds.to(accelerator.device)
                pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
            return prompt_embeds, pooled_prompt_embeds

1459
1460
1461
1462
    # If no type of tuning is done on the text_encoder and custom instance prompts are NOT
    # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid
    # the redundant encoding.
    if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
1463
1464
1465
        instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings(
            args.instance_prompt, text_encoders, tokenizers
        )
1466

1467
    # Handle class prompt for prior-preservation.
1468
    if args.with_prior_preservation:
1469
1470
1471
1472
        if not args.train_text_encoder:
            class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings(
                args.class_prompt, text_encoders, tokenizers
            )
1473

1474
1475
    # Clear the memory here
    if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
1476
1477
        del tokenizers, text_encoders
        gc.collect()
1478
1479
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
1480

1481
1482
    # If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
    # pack the statically computed variables appropriately here. This is so that we don't
1483
1484
    # have to pass them to the dataloader.

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
    if not train_dataset.custom_instance_prompts:
        if not args.train_text_encoder:
            prompt_embeds = instance_prompt_hidden_states
            unet_add_text_embeds = instance_pooled_prompt_embeds
            if args.with_prior_preservation:
                prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0)
                unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0)
        # if we're optmizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the
        # batch prompts on all training steps
        else:
            tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt)
            tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt)
            if args.with_prior_preservation:
                class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt)
                class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt)
                tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0)
                tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0)
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1513
1514
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1515
1516
1517
1518
1519
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
1520
1521
1522
1523
1524
1525
1526
1527
    if args.train_text_encoder:
        unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1539
1540
        tracker_name = (
            "dreambooth-lora-sd-xl"
1541
            if "playground" not in args.pretrained_model_name_or_path
1542
1543
1544
            else "dreambooth-lora-playground"
        )
        accelerator.init_trackers(tracker_name, config=vars(args))
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1576
            initial_global_step = 0
1577
1578
1579
1580
1581
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1582
            initial_global_step = global_step
1583
1584
            first_epoch = global_step // num_update_steps_per_epoch

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1595

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
    def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
        sigmas = noise_scheduler.sigmas.to(device=accelerator.device, dtype=dtype)
        schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
        timesteps = timesteps.to(accelerator.device)

        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma

1608
1609
    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
1610
1611
1612
        if args.train_text_encoder:
            text_encoder_one.train()
            text_encoder_two.train()
Patrick von Platen's avatar
Patrick von Platen committed
1613

1614
            # set top parameter requires_grad = True for gradient checkpointing works
1615
1616
            accelerator.unwrap_model(text_encoder_one).text_model.embeddings.requires_grad_(True)
            accelerator.unwrap_model(text_encoder_two).text_model.embeddings.requires_grad_(True)
Patrick von Platen's avatar
Patrick von Platen committed
1617

1618
1619
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
1620
                pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
                prompts = batch["prompts"]

                # encode batch prompts when custom prompts are provided for each image -
                if train_dataset.custom_instance_prompts:
                    if not args.train_text_encoder:
                        prompt_embeds, unet_add_text_embeds = compute_text_embeddings(
                            prompts, text_encoders, tokenizers
                        )
                    else:
                        tokens_one = tokenize_prompt(tokenizer_one, prompts)
                        tokens_two = tokenize_prompt(tokenizer_two, prompts)
1632
1633

                # Convert images to latent space
1634
                model_input = vae.encode(pixel_values).latent_dist.sample()
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

                if latents_mean is None and latents_std is None:
                    model_input = model_input * vae.config.scaling_factor
                    if args.pretrained_vae_model_name_or_path is None:
                        model_input = model_input.to(weight_dtype)
                else:
                    latents_mean = latents_mean.to(device=model_input.device, dtype=model_input.dtype)
                    latents_std = latents_std.to(device=model_input.device, dtype=model_input.dtype)
                    model_input = (model_input - latents_mean) * vae.config.scaling_factor / latents_std
                    model_input = model_input.to(dtype=weight_dtype)
1645
1646
1647
1648

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(model_input)
                bsz = model_input.shape[0]
1649

1650
                # Sample a random timestep for each image
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
                if not args.do_edm_style_training:
                    timesteps = torch.randint(
                        0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                    )
                    timesteps = timesteps.long()
                else:
                    # in EDM formulation, the model is conditioned on the pre-conditioned noise levels
                    # instead of discrete timesteps, so here we sample indices to get the noise levels
                    # from `scheduler.timesteps`
                    indices = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,))
                    timesteps = noise_scheduler.timesteps[indices].to(device=model_input.device)
1662
1663
1664
1665

                # Add noise to the model input according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1666
1667
1668
1669
1670
1671
1672
1673
1674
                # For EDM-style training, we first obtain the sigmas based on the continuous timesteps.
                # We then precondition the final model inputs based on these sigmas instead of the timesteps.
                # Follow: Section 5 of https://arxiv.org/abs/2206.00364.
                if args.do_edm_style_training:
                    sigmas = get_sigmas(timesteps, len(noisy_model_input.shape), noisy_model_input.dtype)
                    if "EDM" in scheduler_type:
                        inp_noisy_latents = noise_scheduler.precondition_inputs(noisy_model_input, sigmas)
                    else:
                        inp_noisy_latents = noisy_model_input / ((sigmas**2 + 1) ** 0.5)
1675

1676
1677
1678
1679
1680
1681
1682
1683
                # time ids
                add_time_ids = torch.cat(
                    [
                        compute_time_ids(original_size=s, crops_coords_top_left=c)
                        for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])
                    ]
                )

1684
1685
1686
1687
1688
                # Calculate the elements to repeat depending on the use of prior-preservation and custom captions.
                if not train_dataset.custom_instance_prompts:
                    elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz
                else:
                    elems_to_repeat_text_embeds = 1
1689

1690
                # Predict the noise residual
1691
1692
                if not args.train_text_encoder:
                    unet_added_conditions = {
1693
                        "time_ids": add_time_ids,
1694
                        "text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
1695
                    }
1696
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
1697
                    model_pred = unet(
1698
                        inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
1699
                        timesteps,
1700
                        prompt_embeds_input,
1701
                        added_cond_kwargs=unet_added_conditions,
1702
1703
                        return_dict=False,
                    )[0]
1704
                else:
1705
                    unet_added_conditions = {"time_ids": add_time_ids}
1706
1707
1708
1709
1710
1711
                    prompt_embeds, pooled_prompt_embeds = encode_prompt(
                        text_encoders=[text_encoder_one, text_encoder_two],
                        tokenizers=None,
                        prompt=None,
                        text_input_ids_list=[tokens_one, tokens_two],
                    )
1712
1713
1714
1715
                    unet_added_conditions.update(
                        {"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
                    )
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
1716
                    model_pred = unet(
1717
                        inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
1718
1719
1720
1721
1722
                        timesteps,
                        prompt_embeds_input,
                        added_cond_kwargs=unet_added_conditions,
                        return_dict=False,
                    )[0]
1723

1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
                weighting = None
                if args.do_edm_style_training:
                    # Similar to the input preconditioning, the model predictions are also preconditioned
                    # on noised model inputs (before preconditioning) and the sigmas.
                    # Follow: Section 5 of https://arxiv.org/abs/2206.00364.
                    if "EDM" in scheduler_type:
                        model_pred = noise_scheduler.precondition_outputs(noisy_model_input, model_pred, sigmas)
                    else:
                        if noise_scheduler.config.prediction_type == "epsilon":
                            model_pred = model_pred * (-sigmas) + noisy_model_input
                        elif noise_scheduler.config.prediction_type == "v_prediction":
                            model_pred = model_pred * (-sigmas / (sigmas**2 + 1) ** 0.5) + (
                                noisy_model_input / (sigmas**2 + 1)
                            )
                    # We are not doing weighting here because it tends result in numerical problems.
                    # See: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051
                    # There might be other alternatives for weighting as well:
                    # https://github.com/huggingface/diffusers/pull/7126#discussion_r1505404686
                    if "EDM" not in scheduler_type:
                        weighting = (sigmas**-2.0).float()

1745
1746
                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
1747
                    target = model_input if args.do_edm_style_training else noise
1748
                elif noise_scheduler.config.prediction_type == "v_prediction":
1749
1750
1751
1752
1753
                    target = (
                        model_input
                        if args.do_edm_style_training
                        else noise_scheduler.get_velocity(model_input, noise, timesteps)
                    )
1754
1755
1756
1757
1758
1759
1760
1761
1762
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute prior loss
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
                    if weighting is not None:
                        prior_loss = torch.mean(
                            (weighting.float() * (model_pred_prior.float() - target_prior.float()) ** 2).reshape(
                                target_prior.shape[0], -1
                            ),
                            1,
                        )
                        prior_loss = prior_loss.mean()
                    else:
                        prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1773

1774
                if args.snr_gamma is None:
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
                    if weighting is not None:
                        loss = torch.mean(
                            (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(
                                target.shape[0], -1
                            ),
                            1,
                        )
                        loss = loss.mean()
                    else:
                        loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
                    snr = compute_snr(noise_scheduler, timesteps)
                    base_weight = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
                    )

                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
                        mse_loss_weights = base_weight + 1
                    else:
                        # Epsilon and sample both use the same loss weights.
                        mse_loss_weights = base_weight

                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()

                if args.with_prior_preservation:
1806
1807
1808
1809
1810
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
                if accelerator.sync_gradients:
1811
1812
1813
1814
1815
                    params_to_clip = (
                        itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
                        if args.train_text_encoder
                        else unet_lora_parameters
                    )
1816
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1817

1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                # create pipeline
1863
1864
                if not args.train_text_encoder:
                    text_encoder_one = text_encoder_cls_one.from_pretrained(
1865
1866
1867
1868
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder",
                        revision=args.revision,
                        variant=args.variant,
1869
1870
                    )
                    text_encoder_two = text_encoder_cls_two.from_pretrained(
1871
1872
1873
1874
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder_2",
                        revision=args.revision,
                        variant=args.variant,
1875
1876
                    )
                pipeline = StableDiffusionXLPipeline.from_pretrained(
1877
                    args.pretrained_model_name_or_path,
1878
                    vae=vae,
1879
1880
                    text_encoder=accelerator.unwrap_model(text_encoder_one),
                    text_encoder_2=accelerator.unwrap_model(text_encoder_two),
1881
1882
                    unet=accelerator.unwrap_model(unet),
                    revision=args.revision,
1883
                    variant=args.variant,
1884
1885
1886
1887
                    torch_dtype=weight_dtype,
                )
                pipeline_args = {"prompt": args.validation_prompt}

1888
1889
1890
1891
1892
1893
1894
                images = log_validation(
                    pipeline,
                    args,
                    accelerator,
                    pipeline_args,
                    epoch,
                )
1895
1896
1897
1898

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
1899
        unet = unwrap_model(unet)
1900
        unet = unet.to(torch.float32)
1901
        unet_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))
1902

1903
        if args.train_text_encoder:
1904
            text_encoder_one = unwrap_model(text_encoder_one)
1905
1906
1907
            text_encoder_lora_layers = convert_state_dict_to_diffusers(
                get_peft_model_state_dict(text_encoder_one.to(torch.float32))
            )
1908
            text_encoder_two = unwrap_model(text_encoder_two)
1909
1910
1911
            text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
                get_peft_model_state_dict(text_encoder_two.to(torch.float32))
            )
1912
1913
1914
1915
1916
        else:
            text_encoder_lora_layers = None
            text_encoder_2_lora_layers = None

        StableDiffusionXLPipeline.save_lora_weights(
1917
1918
            save_directory=args.output_dir,
            unet_lora_layers=unet_lora_layers,
1919
1920
            text_encoder_lora_layers=text_encoder_lora_layers,
            text_encoder_2_lora_layers=text_encoder_2_lora_layers,
1921
        )
1922
1923
1924
1925
1926
        if args.output_kohya_format:
            lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors")
            peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict)
            kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict)
            save_file(kohya_state_dict, f"{args.output_dir}/pytorch_lora_weights_kohya.safetensors")
1927
1928
1929

        # Final inference
        # Load previous pipeline
1930
1931
1932
1933
        vae = AutoencoderKL.from_pretrained(
            vae_path,
            subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
            revision=args.revision,
1934
            variant=args.variant,
1935
1936
1937
            torch_dtype=weight_dtype,
        )
        pipeline = StableDiffusionXLPipeline.from_pretrained(
1938
1939
1940
1941
1942
            args.pretrained_model_name_or_path,
            vae=vae,
            revision=args.revision,
            variant=args.variant,
            torch_dtype=weight_dtype,
1943
1944
1945
1946
1947
1948
1949
1950
        )

        # load attention processors
        pipeline.load_lora_weights(args.output_dir)

        # run inference
        images = []
        if args.validation_prompt and args.num_validation_images > 0:
1951
1952
1953
1954
1955
1956
1957
            pipeline_args = {"prompt": args.validation_prompt, "num_inference_steps": 25}
            images = log_validation(
                pipeline,
                args,
                accelerator,
                pipeline_args,
                epoch,
1958
                is_final_validation=True,
1959
            )
1960
1961
1962
1963

        if args.push_to_hub:
            save_model_card(
                repo_id,
1964
                use_dora=args.use_dora,
1965
1966
1967
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
1968
1969
                instance_prompt=args.instance_prompt,
                validation_prompt=args.validation_prompt,
1970
                repo_folder=args.output_dir,
1971
                vae_path=args.pretrained_vae_model_name_or_path,
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
            )
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)