convert_ddpm_original_checkpoint_to_diffusers.py 17.4 KB
Newer Older
1
from diffusers import UNet2DModel, DDPMScheduler, DDPMPipeline, VQModel, AutoencoderKL
Lysandre Debut's avatar
Lysandre Debut committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
import json
import torch


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return '.'.join(path.split('.')[n_shave_prefix_segments:])
    else:
        return '.'.join(path.split('.')[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    mapping = []
    for old_item in old_list:
        new_item = old_item
        new_item = new_item.replace('block.', 'resnets.')
        new_item = new_item.replace('conv_shorcut', 'conv1')
        new_item = new_item.replace('nin_shortcut', 'conv_shortcut')
        new_item = new_item.replace('temb_proj', 'time_emb_proj')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({'old': old_item, 'new': new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False):
    mapping = []
    for old_item in old_list:
        new_item = old_item

        # In `model.mid`, the layer is called `attn`.
        if not in_mid:
            new_item = new_item.replace('attn', 'attentions')
        new_item = new_item.replace('.k.', '.key.')
        new_item = new_item.replace('.v.', '.value.')
        new_item = new_item.replace('.q.', '.query.')

        new_item = new_item.replace('proj_out', 'proj_attn')
        new_item = new_item.replace('norm', 'group_norm')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
        mapping.append({'old': old_item, 'new': new_item})

    return mapping


def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None):
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    if attention_paths_to_split is not None:
        if config is None:
59
            raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.")
Lysandre Debut's avatar
Lysandre Debut committed
60
61
62
63
64
65
66

        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

67
            num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3
Lysandre Debut's avatar
Lysandre Debut committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map['query']] = query.reshape(target_shape).squeeze()
            checkpoint[path_map['key']] = key.reshape(target_shape).squeeze()
            checkpoint[path_map['value']] = value.reshape(target_shape).squeeze()

    for path in paths:
        new_path = path['new']

        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

82
        new_path = new_path.replace('down.', 'down_blocks.')
Patrick von Platen's avatar
Patrick von Platen committed
83
        new_path = new_path.replace('up.', 'up_blocks.')
Lysandre Debut's avatar
Lysandre Debut committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement['old'], replacement['new'])

        if 'attentions' in new_path:
            checkpoint[new_path] = old_checkpoint[path['old']].squeeze()
        else:
            checkpoint[new_path] = old_checkpoint[path['old']]


def convert_ddpm_checkpoint(checkpoint, config):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    new_checkpoint = {}

    new_checkpoint['time_embedding.linear_1.weight'] = checkpoint['temb.dense.0.weight']
    new_checkpoint['time_embedding.linear_1.bias'] = checkpoint['temb.dense.0.bias']
    new_checkpoint['time_embedding.linear_2.weight'] = checkpoint['temb.dense.1.weight']
    new_checkpoint['time_embedding.linear_2.bias'] = checkpoint['temb.dense.1.bias']

    new_checkpoint['conv_norm_out.weight'] = checkpoint['norm_out.weight']
    new_checkpoint['conv_norm_out.bias'] = checkpoint['norm_out.bias']

    new_checkpoint['conv_in.weight'] = checkpoint['conv_in.weight']
    new_checkpoint['conv_in.bias'] = checkpoint['conv_in.bias']
    new_checkpoint['conv_out.weight'] = checkpoint['conv_out.weight']
    new_checkpoint['conv_out.bias'] = checkpoint['conv_out.bias']

114
115
    num_down_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'down' in layer})
    down_blocks = {layer_id: [key for key in checkpoint if f'down.{layer_id}' in key] for layer_id in range(num_down_blocks)}
Lysandre Debut's avatar
Lysandre Debut committed
116

Patrick von Platen's avatar
Patrick von Platen committed
117
118
    num_up_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'up' in layer})
    up_blocks = {layer_id: [key for key in checkpoint if f'up.{layer_id}' in key] for layer_id in range(num_up_blocks)}
Lysandre Debut's avatar
Lysandre Debut committed
119

120
121
    for i in range(num_down_blocks):
        block_id = (i - 1) // (config['layers_per_block'] + 1)
Lysandre Debut's avatar
Lysandre Debut committed
122

123
124
125
126
127
        if any('downsample' in layer for layer in down_blocks[i]):
            new_checkpoint[f'down_blocks.{i}.downsamplers.0.conv.weight'] = checkpoint[f'down.{i}.downsample.op.weight']
            new_checkpoint[f'down_blocks.{i}.downsamplers.0.conv.bias'] = checkpoint[f'down.{i}.downsample.op.bias']
#            new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight']
#            new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias']
Lysandre Debut's avatar
Lysandre Debut committed
128

129
130
131
        if any('block' in layer for layer in down_blocks[i]):
            num_blocks = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in down_blocks[i] if 'block' in layer})
            blocks = {layer_id: [key for key in down_blocks[i] if f'block.{layer_id}' in key] for layer_id in range(num_blocks)}
Lysandre Debut's avatar
Lysandre Debut committed
132
133

            if num_blocks > 0:
134
                for j in range(config['layers_per_block']):
Lysandre Debut's avatar
Lysandre Debut committed
135
136
137
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint)

138
139
140
        if any('attn' in layer for layer in down_blocks[i]):
            num_attn = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in down_blocks[i] if 'attn' in layer})
            attns = {layer_id: [key for key in down_blocks[i] if f'attn.{layer_id}' in key] for layer_id in range(num_blocks)}
Lysandre Debut's avatar
Lysandre Debut committed
141
142

            if num_attn > 0:
143
                for j in range(config['layers_per_block']):
Lysandre Debut's avatar
Lysandre Debut committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config)

    mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key]
    mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key]
    mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key]

    # Mid new 2
    paths = renew_resnet_paths(mid_block_1_layers)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'block_1', 'new': 'resnets.0'}
    ])

    paths = renew_resnet_paths(mid_block_2_layers)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'block_2', 'new': 'resnets.1'}
    ])

    paths = renew_attention_paths(mid_attn_1_layers, in_mid=True)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'attn_1', 'new': 'attentions.0'}
    ])

Patrick von Platen's avatar
Patrick von Platen committed
167
168
    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
Lysandre Debut's avatar
Lysandre Debut committed
169

Patrick von Platen's avatar
Patrick von Platen committed
170
171
172
        if any('upsample' in layer for layer in up_blocks[i]):
            new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.weight'] = checkpoint[f'up.{i}.upsample.conv.weight']
            new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.bias'] = checkpoint[f'up.{i}.upsample.conv.bias']
Lysandre Debut's avatar
Lysandre Debut committed
173

Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
        if any('block' in layer for layer in up_blocks[i]):
            num_blocks = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in up_blocks[i] if 'block' in layer})
            blocks = {layer_id: [key for key in up_blocks[i] if f'block.{layer_id}' in key] for layer_id in range(num_blocks)}
Lysandre Debut's avatar
Lysandre Debut committed
177
178

            if num_blocks > 0:
179
                for j in range(config['layers_per_block'] + 1):
Patrick von Platen's avatar
Patrick von Platen committed
180
                    replace_indices = {'old': f'up_blocks.{i}', 'new': f'up_blocks.{block_id}'}
Lysandre Debut's avatar
Lysandre Debut committed
181
182
183
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

Patrick von Platen's avatar
Patrick von Platen committed
184
185
186
        if any('attn' in layer for layer in up_blocks[i]):
            num_attn = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in up_blocks[i] if 'attn' in layer})
            attns = {layer_id: [key for key in up_blocks[i] if f'attn.{layer_id}' in key] for layer_id in range(num_blocks)}
Lysandre Debut's avatar
Lysandre Debut committed
187
188

            if num_attn > 0:
189
                for j in range(config['layers_per_block'] + 1):
Patrick von Platen's avatar
Patrick von Platen committed
190
                    replace_indices = {'old': f'up_blocks.{i}', 'new': f'up_blocks.{block_id}'}
Lysandre Debut's avatar
Lysandre Debut committed
191
192
193
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

Patrick von Platen's avatar
Patrick von Platen committed
194
    new_checkpoint = {k.replace('mid_new_2', 'mid_block'): v for k, v in new_checkpoint.items()}
Lysandre Debut's avatar
Lysandre Debut committed
195
196
197
    return new_checkpoint


198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
def convert_vq_autoenc_checkpoint(checkpoint, config):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    new_checkpoint = {}

    new_checkpoint['encoder.conv_norm_out.weight'] = checkpoint['encoder.norm_out.weight']
    new_checkpoint['encoder.conv_norm_out.bias'] = checkpoint['encoder.norm_out.bias']

    new_checkpoint['encoder.conv_in.weight'] = checkpoint['encoder.conv_in.weight']
    new_checkpoint['encoder.conv_in.bias'] = checkpoint['encoder.conv_in.bias']
    new_checkpoint['encoder.conv_out.weight'] = checkpoint['encoder.conv_out.weight']
    new_checkpoint['encoder.conv_out.bias'] = checkpoint['encoder.conv_out.bias']

    new_checkpoint['decoder.conv_norm_out.weight'] = checkpoint['decoder.norm_out.weight']
    new_checkpoint['decoder.conv_norm_out.bias'] = checkpoint['decoder.norm_out.bias']

    new_checkpoint['decoder.conv_in.weight'] = checkpoint['decoder.conv_in.weight']
    new_checkpoint['decoder.conv_in.bias'] = checkpoint['decoder.conv_in.bias']
    new_checkpoint['decoder.conv_out.weight'] = checkpoint['decoder.conv_out.weight']
    new_checkpoint['decoder.conv_out.bias'] = checkpoint['decoder.conv_out.bias']

    num_down_blocks = len({'.'.join(layer.split('.')[:3]) for layer in checkpoint if 'down' in layer})
    down_blocks = {layer_id: [key for key in checkpoint if f'down.{layer_id}' in key] for layer_id in range(num_down_blocks)}

    num_up_blocks = len({'.'.join(layer.split('.')[:3]) for layer in checkpoint if 'up' in layer})
    up_blocks = {layer_id: [key for key in checkpoint if f'up.{layer_id}' in key] for layer_id in range(num_up_blocks)}

    for i in range(num_down_blocks):
        block_id = (i - 1) // (config['layers_per_block'] + 1)

        if any('downsample' in layer for layer in down_blocks[i]):
            new_checkpoint[f'encoder.down_blocks.{i}.downsamplers.0.conv.weight'] = checkpoint[f'encoder.down.{i}.downsample.conv.weight']
            new_checkpoint[f'encoder.down_blocks.{i}.downsamplers.0.conv.bias'] = checkpoint[f'encoder.down.{i}.downsample.conv.bias']

        if any('block' in layer for layer in down_blocks[i]):
            num_blocks = len({'.'.join(shave_segments(layer, 3).split('.')[:3]) for layer in down_blocks[i] if 'block' in layer})
            blocks = {layer_id: [key for key in down_blocks[i] if f'block.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_blocks > 0:
                for j in range(config['layers_per_block']):
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint)

        if any('attn' in layer for layer in down_blocks[i]):
            num_attn = len({'.'.join(shave_segments(layer, 3).split('.')[:3]) for layer in down_blocks[i] if 'attn' in layer})
            attns = {layer_id: [key for key in down_blocks[i] if f'attn.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_attn > 0:
                for j in range(config['layers_per_block']):
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config)

    mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key]
    mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key]
    mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key]

    # Mid new 2
    paths = renew_resnet_paths(mid_block_1_layers)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'block_1', 'new': 'resnets.0'}
    ])

    paths = renew_resnet_paths(mid_block_2_layers)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'block_2', 'new': 'resnets.1'}
    ])

    paths = renew_attention_paths(mid_attn_1_layers, in_mid=True)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'attn_1', 'new': 'attentions.0'}
    ])

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i

        if any('upsample' in layer for layer in up_blocks[i]):
            new_checkpoint[f'decoder.up_blocks.{block_id}.upsamplers.0.conv.weight'] = checkpoint[f'decoder.up.{i}.upsample.conv.weight']
            new_checkpoint[f'decoder.up_blocks.{block_id}.upsamplers.0.conv.bias'] = checkpoint[f'decoder.up.{i}.upsample.conv.bias']

        if any('block' in layer for layer in up_blocks[i]):
            num_blocks = len({'.'.join(shave_segments(layer, 3).split('.')[:3]) for layer in up_blocks[i] if 'block' in layer})
            blocks = {layer_id: [key for key in up_blocks[i] if f'block.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_blocks > 0:
                for j in range(config['layers_per_block'] + 1):
                    replace_indices = {'old': f'up_blocks.{i}', 'new': f'up_blocks.{block_id}'}
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

        if any('attn' in layer for layer in up_blocks[i]):
            num_attn = len({'.'.join(shave_segments(layer, 3).split('.')[:3]) for layer in up_blocks[i] if 'attn' in layer})
            attns = {layer_id: [key for key in up_blocks[i] if f'attn.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_attn > 0:
                for j in range(config['layers_per_block'] + 1):
                    replace_indices = {'old': f'up_blocks.{i}', 'new': f'up_blocks.{block_id}'}
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

    new_checkpoint = {k.replace('mid_new_2', 'mid_block'): v for k, v in new_checkpoint.items()}
    new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"]
    new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"]
    if "quantize.embedding.weight" in checkpoint:
        new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"]
    new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"]
    new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"]

    return new_checkpoint


Lysandre Debut's avatar
Lysandre Debut committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )

    parser.add_argument(
        "--config_file",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the architecture.",
    )

    parser.add_argument(
        "--dump_path", default=None, type=str, required=True, help="Path to the output model."
    )

    args = parser.parse_args()
    checkpoint = torch.load(args.checkpoint_path)

    with open(args.config_file) as f:
        config = json.loads(f.read())

334
335
336
337
338
339
    # unet case
    key_prefix_set = set(key.split(".")[0] for key in checkpoint.keys())
    if "encoder" in key_prefix_set and "decoder" in key_prefix_set:
        converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config)
    else:
        converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config)
340
341
342
343

    if "ddpm" in config:
        del config["ddpm"]

344
345
346
347
348
349
350
351
352
353
354
    if config["_class_name"] == "VQModel":
        model = VQModel(**config)
        model.load_state_dict(converted_checkpoint)
        model.save_pretrained(args.dump_path)
    elif config["_class_name"] == "AutoencoderKL":
        model = AutoencoderKL(**config)
        model.load_state_dict(converted_checkpoint)
        model.save_pretrained(args.dump_path)
    else:
        model = UNet2DModel(**config)
        model.load_state_dict(converted_checkpoint)
355

356
        scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
357

358
359
        pipe = DDPMPipeline(unet=model, scheduler=scheduler)
        pipe.save_pretrained(args.dump_path)