convert_ddpm_original_checkpoint_to_diffusers.py 10.6 KB
Newer Older
1
from diffusers import UNetUnconditionalModel, DDPMScheduler, DDPMPipeline
Lysandre Debut's avatar
Lysandre Debut committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
import json
import torch


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return '.'.join(path.split('.')[n_shave_prefix_segments:])
    else:
        return '.'.join(path.split('.')[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    mapping = []
    for old_item in old_list:
        new_item = old_item
        new_item = new_item.replace('block.', 'resnets.')
        new_item = new_item.replace('conv_shorcut', 'conv1')
        new_item = new_item.replace('nin_shortcut', 'conv_shortcut')
        new_item = new_item.replace('temb_proj', 'time_emb_proj')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({'old': old_item, 'new': new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False):
    mapping = []
    for old_item in old_list:
        new_item = old_item

        # In `model.mid`, the layer is called `attn`.
        if not in_mid:
            new_item = new_item.replace('attn', 'attentions')
        new_item = new_item.replace('.k.', '.key.')
        new_item = new_item.replace('.v.', '.value.')
        new_item = new_item.replace('.q.', '.query.')

        new_item = new_item.replace('proj_out', 'proj_attn')
        new_item = new_item.replace('norm', 'group_norm')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
        mapping.append({'old': old_item, 'new': new_item})

    return mapping


def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None):
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    if attention_paths_to_split is not None:
        if config is None:
59
            raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.")
Lysandre Debut's avatar
Lysandre Debut committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map['query']] = query.reshape(target_shape).squeeze()
            checkpoint[path_map['key']] = key.reshape(target_shape).squeeze()
            checkpoint[path_map['value']] = value.reshape(target_shape).squeeze()

    for path in paths:
        new_path = path['new']

        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        new_path = new_path.replace('down.', 'downsample_blocks.')
        new_path = new_path.replace('up.', 'upsample_blocks.')

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement['old'], replacement['new'])

        if 'attentions' in new_path:
            checkpoint[new_path] = old_checkpoint[path['old']].squeeze()
        else:
            checkpoint[new_path] = old_checkpoint[path['old']]


def convert_ddpm_checkpoint(checkpoint, config):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    new_checkpoint = {}

    new_checkpoint['time_embedding.linear_1.weight'] = checkpoint['temb.dense.0.weight']
    new_checkpoint['time_embedding.linear_1.bias'] = checkpoint['temb.dense.0.bias']
    new_checkpoint['time_embedding.linear_2.weight'] = checkpoint['temb.dense.1.weight']
    new_checkpoint['time_embedding.linear_2.bias'] = checkpoint['temb.dense.1.bias']

    new_checkpoint['conv_norm_out.weight'] = checkpoint['norm_out.weight']
    new_checkpoint['conv_norm_out.bias'] = checkpoint['norm_out.bias']

    new_checkpoint['conv_in.weight'] = checkpoint['conv_in.weight']
    new_checkpoint['conv_in.bias'] = checkpoint['conv_in.bias']
    new_checkpoint['conv_out.weight'] = checkpoint['conv_out.weight']
    new_checkpoint['conv_out.bias'] = checkpoint['conv_out.bias']

    num_downsample_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'down' in layer})
    downsample_blocks = {layer_id: [key for key in checkpoint if f'down.{layer_id}' in key] for layer_id in range(num_downsample_blocks)}

    num_upsample_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'up' in layer})
    upsample_blocks = {layer_id: [key for key in checkpoint if f'up.{layer_id}' in key] for layer_id in range(num_upsample_blocks)}

    for i in range(num_downsample_blocks):
        block_id = (i - 1) // (config['num_res_blocks'] + 1)

        if any('downsample' in layer for layer in downsample_blocks[i]):
            new_checkpoint[f'downsample_blocks.{i}.downsamplers.0.conv.weight'] = checkpoint[f'down.{i}.downsample.conv.weight']
            new_checkpoint[f'downsample_blocks.{i}.downsamplers.0.conv.bias'] = checkpoint[f'down.{i}.downsample.conv.bias']
            new_checkpoint[f'downsample_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight']
            new_checkpoint[f'downsample_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias']

        if any('block' in layer for layer in downsample_blocks[i]):
            num_blocks = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in downsample_blocks[i] if 'block' in layer})
            blocks = {layer_id: [key for key in downsample_blocks[i] if f'block.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_blocks > 0:
                for j in range(config['num_res_blocks']):
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint)

        if any('attn' in layer for layer in downsample_blocks[i]):
            num_attn = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in downsample_blocks[i] if 'attn' in layer})
            attns = {layer_id: [key for key in downsample_blocks[i] if f'attn.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_attn > 0:
                for j in range(config['num_res_blocks']):
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config)

    mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key]
    mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key]
    mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key]

    # Mid new 2
    paths = renew_resnet_paths(mid_block_1_layers)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'block_1', 'new': 'resnets.0'}
    ])

    paths = renew_resnet_paths(mid_block_2_layers)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'block_2', 'new': 'resnets.1'}
    ])

    paths = renew_attention_paths(mid_attn_1_layers, in_mid=True)
    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[
        {'old': 'mid.', 'new': 'mid_new_2.'}, {'old': 'attn_1', 'new': 'attentions.0'}
    ])

    for i in range(num_upsample_blocks):
        block_id = num_upsample_blocks - 1 - i

        if any('upsample' in layer for layer in upsample_blocks[i]):
            new_checkpoint[f'upsample_blocks.{block_id}.upsamplers.0.conv.weight'] = checkpoint[f'up.{i}.upsample.conv.weight']
            new_checkpoint[f'upsample_blocks.{block_id}.upsamplers.0.conv.bias'] = checkpoint[f'up.{i}.upsample.conv.bias']

        if any('block' in layer for layer in upsample_blocks[i]):
            num_blocks = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in upsample_blocks[i] if 'block' in layer})
            blocks = {layer_id: [key for key in upsample_blocks[i] if f'block.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_blocks > 0:
                for j in range(config['num_res_blocks'] + 1):
                    replace_indices = {'old': f'upsample_blocks.{i}', 'new': f'upsample_blocks.{block_id}'}
                    paths = renew_resnet_paths(blocks[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

        if any('attn' in layer for layer in upsample_blocks[i]):
            num_attn = len({'.'.join(shave_segments(layer, 2).split('.')[:2]) for layer in upsample_blocks[i] if 'attn' in layer})
            attns = {layer_id: [key for key in upsample_blocks[i] if f'attn.{layer_id}' in key] for layer_id in range(num_blocks)}

            if num_attn > 0:
                for j in range(config['num_res_blocks'] + 1):
                    replace_indices = {'old': f'upsample_blocks.{i}', 'new': f'upsample_blocks.{block_id}'}
                    paths = renew_attention_paths(attns[j])
                    assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices])

    new_checkpoint = {k.replace('mid_new_2', 'mid'): v for k, v in new_checkpoint.items()}
    return new_checkpoint


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )

    parser.add_argument(
        "--config_file",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the architecture.",
    )

    parser.add_argument(
        "--dump_path", default=None, type=str, required=True, help="Path to the output model."
    )

    args = parser.parse_args()
    checkpoint = torch.load(args.checkpoint_path)

    with open(args.config_file) as f:
        config = json.loads(f.read())

223
224
225
226
227
228
229
230
231
232
233
234
    converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config)

    if "ddpm" in config:
        del config["ddpm"]

    model = UNetUnconditionalModel(**config)
    model.load_state_dict(converted_checkpoint)

    scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))

    pipe = DDPMPipeline(unet=model, scheduler=scheduler)
    pipe.save_pretrained(args.dump_path)