test_unclip.py 16.2 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
Will Berman's avatar
Will Berman committed
22
23
24

from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
25
from diffusers.utils import load_numpy, nightly, slow, torch_device
26
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
Will Berman's avatar
Will Berman committed
27

28
29
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Will Berman's avatar
Will Berman committed
30
31


32
enable_full_determinism()
33
34


35
36
class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPPipeline
37
38
39
40
41
42
43
44
45
46
    params = TEXT_TO_IMAGE_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
        "guidance_scale",
        "prompt_embeds",
        "cross_attention_kwargs",
    }
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
47
48
49
50
51
52
53
    required_optional_params = [
        "generator",
        "return_dict",
        "prior_num_inference_steps",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
54
    test_xformers_attention = False
Will Berman's avatar
Will Berman committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 12,
            "embedding_dim": self.text_embedder_hidden_size,
            "num_layers": 1,
        }

        model = PriorTransformer(**model_kwargs)
        return model

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
130
            "sample_size": 32,
Will Berman's avatar
Will Berman committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
152
            "sample_size": 64,
Will Berman's avatar
Will Berman committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

176
    def get_dummy_components(self):
Will Berman's avatar
Will Berman committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        prior = self.dummy_prior
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        prior_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample_range=5.0,
        )

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        components = {
            "prior": prior,
            "decoder": decoder,
            "text_proj": text_proj,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "prior_scheduler": prior_scheduler,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "prior_num_inference_steps": 2,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
            "output_type": "numpy",
        }
        return inputs

    def test_unclip(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
Will Berman's avatar
Will Berman committed
240
241
242
243
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

244
        output = pipe(**self.get_dummy_inputs(device))
Will Berman's avatar
Will Berman committed
245
246
247
        image = output.images

        image_from_tuple = pipe(
248
            **self.get_dummy_inputs(device),
Will Berman's avatar
Will Berman committed
249
250
251
252
253
254
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

255
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
256
257
258
259

        expected_slice = np.array(
            [
                0.9997,
260
261
262
263
264
265
266
267
                0.9988,
                0.0028,
                0.9997,
                0.9984,
                0.9965,
                0.0029,
                0.9986,
                0.0025,
Will Berman's avatar
Will Berman committed
268
269
270
271
272
273
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

274
275
276
277
278
279
    def test_unclip_passed_text_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

280
        components = self.get_dummy_components()
281

282
        pipe = self.pipeline_class(**components)
283
284
        pipe = pipe.to(device)

285
286
287
288
289
290
        prior = components["prior"]
        decoder = components["decoder"]
        super_res_first = components["super_res_first"]
        tokenizer = components["tokenizer"]
        text_encoder = components["text_encoder"]

291
292
293
294
295
296
297
298
        generator = torch.Generator(device=device).manual_seed(0)
        dtype = prior.dtype
        batch_size = 1

        shape = (batch_size, prior.config.embedding_dim)
        prior_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )
299
        shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size)
300
301
302
303
304
305
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
306
307
308
            super_res_first.config.in_channels // 2,
            super_res_first.config.sample_size,
            super_res_first.config.sample_size,
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        pipe.set_progress_bar_config(disable=None)

        prompt = "this is a prompt example"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe(
            [prompt],
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            output_type="np",
        )
        image = output.images

        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_model_output = text_encoder(text_inputs.input_ids)
        text_attention_mask = text_inputs.attention_mask

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_text = pipe(
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            text_model_output=text_model_output,
            text_attention_mask=text_attention_mask,
            output_type="np",
        )[0]

        # make sure passing text embeddings manually is identical
        assert np.abs(image - image_from_text).max() < 1e-4

358
359
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
360
    @skip_mps
361
362
363
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
364
        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01)
365
366
367

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
368
    @skip_mps
369
370
371
    def test_inference_batch_single_identical(self):
        test_max_difference = torch_device == "cpu"
        relax_max_difference = True
372
373
374
375
376
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
377
378

        self._test_inference_batch_single_identical(
379
380
381
            test_max_difference=test_max_difference,
            relax_max_difference=relax_max_difference,
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
382
383
384
        )

    def test_inference_batch_consistent(self):
385
386
387
388
389
390
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

391
392
393
        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
394
395
396
397
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
398
        else:
399
400
401
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )
402

403
    @skip_mps
404
405
406
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

407
    @skip_mps
408
    def test_save_load_local(self):
409
        return super().test_save_load_local(expected_max_difference=5e-3)
410

411
    @skip_mps
412
413
414
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

Will Berman's avatar
Will Berman committed
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
@nightly
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo_cpu_fp32(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_horse_cpu.npy"
        )

        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha")
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        output = pipeline(
            "horse",
            num_images_per_prompt=1,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).max() < 1e-1


Will Berman's avatar
Will Berman committed
447
448
449
450
451
452
453
454
455
456
457
458
@slow
@require_torch_gpu
class UnCLIPPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
459
            "/unclip/karlo_v1_alpha_horse_fp16.npy"
Will Berman's avatar
Will Berman committed
460
461
        )

462
        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
463
464
465
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

466
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
467
468
469
470
471
472
        output = pipeline(
            "horse",
            generator=generator,
            output_type="np",
        )

473
        image = output.images[0]
Will Berman's avatar
Will Berman committed
474
475

        assert image.shape == (256, 256, 3)
476

477
478
        assert_mean_pixel_difference(image, expected_image)

Will Berman's avatar
Will Berman committed
479
    def test_unclip_pipeline_with_sequential_cpu_offloading(self):
480
481
482
483
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

484
        pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
            "horse",
            num_images_per_prompt=1,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
500
501
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9