Unverified Commit fdd0fe65 authored by Zihao Ye's avatar Zihao Ye Committed by GitHub
Browse files

hotfix (#971)

parent 9a0511c8
......@@ -11,6 +11,11 @@ Dependencies
Results
=======
Node classification on citation networks:
## Citation networks
Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python3 citation.py --dataset cora --gpu 0
```
- Cora: ~0.814
- Pubmed: ~0.748
......@@ -18,7 +18,8 @@ class MoNet(nn.Block):
out_feats,
n_layers,
dim,
n_kernels):
n_kernels,
dropout):
super(MoNet, self).__init__()
self.g = g
with self.name_scope():
......@@ -39,9 +40,13 @@ class MoNet(nn.Block):
self.layers.add(GMMConv(n_hidden, out_feats, dim, n_kernels))
self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))
self.dropout = nn.Dropout(dropout)
def forward(self, feat, pseudo):
h = feat
for i in range(len(self.layers)):
if i > 0:
h = self.dropout(h)
h = self.layers[i](
self.g, h, self.pseudo_proj[i](pseudo))
return h
......@@ -109,6 +114,7 @@ def main(args):
args.n_layers,
args.pseudo_dim,
args.n_kernels,
args.dropout
)
model.initialize(ctx=ctx)
n_train_samples = train_mask.sum().asscalar()
......
......@@ -43,9 +43,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -59,9 +59,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------'
#Edges %d
......
......@@ -60,9 +60,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -137,9 +137,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -44,9 +44,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -78,9 +78,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -64,9 +64,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -11,9 +11,14 @@ Dependencies
Results
=======
Node classification on citation networks:
## Citation networks
Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python3 citation.py --dataset cora --gpu 0
```
- Cora: ~0.816
- Pubmed: ~0.763
Image classification on MNIST:
## Image classification:
- please refer to [model_zoo/geometric](../model_zoo/geometric).
\ No newline at end of file
......@@ -36,9 +36,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------'
#Edges %d
......
......@@ -37,9 +37,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------'
#Edges %d
......
......@@ -161,9 +161,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------'
#Edges %d
......
......@@ -132,9 +132,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------'
#Edges %d
......
......@@ -48,9 +48,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -51,9 +51,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -42,9 +42,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
if args.gpu < 0:
cuda = False
......
......@@ -152,6 +152,7 @@ def edge_softmax(graph, logits, eids=ALL):
<NDArray 6x1 @cpu(0)>
Apply edge softmax on first 4 edges of g:
>>> edge_softmax(g, edata, nd.array([0,1,2,3], dtype='int64'))
[[1. ]
[0.5]
......
......@@ -154,6 +154,7 @@ def edge_softmax(graph, logits, eids=ALL):
[0.3333]])
Apply edge softmax on first 4 edges of g:
>>> edge_softmax(g, edata[:4], th.Tensor([0,1,2,3]))
tensor([[1.0000],
[0.5000],
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment