Unverified Commit 49e96970 authored by Quan (Andy) Gan's avatar Quan (Andy) Gan Committed by GitHub
Browse files

[Doc] fix typos in PyTorch DataLoaders (#2216)

* fix doc

* fix doc
parent 0b00562d
...@@ -185,7 +185,7 @@ class NodeDataLoader: ...@@ -185,7 +185,7 @@ class NodeDataLoader:
a homogeneous graph where each node takes messages from all neighbors (assume a homogeneous graph where each node takes messages from all neighbors (assume
the backend is PyTorch): the backend is PyTorch):
>>> sampler = dgl.dataloading.NeighborSampler([None, None, None]) >>> sampler = dgl.dataloading.MultiLayerNeighborSampler([15, 10, 5])
>>> dataloader = dgl.dataloading.NodeDataLoader( >>> dataloader = dgl.dataloading.NodeDataLoader(
... g, train_nid, sampler, ... g, train_nid, sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4) ... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
...@@ -304,9 +304,9 @@ class EdgeDataLoader: ...@@ -304,9 +304,9 @@ class EdgeDataLoader:
computation dependencies of the incident nodes. This is a common trick to avoid computation dependencies of the incident nodes. This is a common trick to avoid
information leakage. information leakage.
>>> sampler = dgl.dataloading.NeighborSampler([None, None, None]) >>> sampler = dgl.dataloading.MultiLayerNeighborSampler([15, 10, 5])
>>> dataloader = dgl.dataloading.EdgeDataLoader( >>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, train_eid, sampler, exclude='reverse', ... g, train_eid, sampler, exclude='reverse_id',
... reverse_eids=reverse_eids, ... reverse_eids=reverse_eids,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4) ... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pair_graph, blocks in dataloader: >>> for input_nodes, pair_graph, blocks in dataloader:
...@@ -316,10 +316,10 @@ class EdgeDataLoader: ...@@ -316,10 +316,10 @@ class EdgeDataLoader:
homogeneous graph where each node takes messages from all neighbors (assume the homogeneous graph where each node takes messages from all neighbors (assume the
backend is PyTorch), with 5 uniformly chosen negative samples per edge: backend is PyTorch), with 5 uniformly chosen negative samples per edge:
>>> sampler = dgl.dataloading.NeighborSampler([None, None, None]) >>> sampler = dgl.dataloading.MultiLayerNeighborSampler([15, 10, 5])
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5) >>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> dataloader = dgl.dataloading.EdgeDataLoader( >>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, train_eid, sampler, exclude='reverse', ... g, train_eid, sampler, exclude='reverse_id',
... reverse_eids=reverse_eids, negative_sampler=neg_sampler, ... reverse_eids=reverse_eids, negative_sampler=neg_sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4) ... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader: >>> for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
...@@ -338,7 +338,7 @@ class EdgeDataLoader: ...@@ -338,7 +338,7 @@ class EdgeDataLoader:
To train a 3-layer GNN for edge classification on a set of edges ``train_eid`` with To train a 3-layer GNN for edge classification on a set of edges ``train_eid`` with
type ``click``, you can write type ``click``, you can write
>>> sampler = dgl.dataloading.NeighborSampler([None, None, None]) >>> sampler = dgl.dataloading.MultiLayerNeighborSampler([15, 10, 5])
>>> dataloader = dgl.dataloading.EdgeDataLoader( >>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, {'click': train_eid}, sampler, exclude='reverse_types', ... g, {'click': train_eid}, sampler, exclude='reverse_types',
... reverse_etypes={'click': 'clicked-by', 'clicked-by': 'click'}, ... reverse_etypes={'click': 'clicked-by', 'clicked-by': 'click'},
...@@ -349,7 +349,7 @@ class EdgeDataLoader: ...@@ -349,7 +349,7 @@ class EdgeDataLoader:
To train a 3-layer GNN for link prediction on a set of edges ``train_eid`` with type To train a 3-layer GNN for link prediction on a set of edges ``train_eid`` with type
``click``, you can write ``click``, you can write
>>> sampler = dgl.dataloading.NeighborSampler([None, None, None]) >>> sampler = dgl.dataloading.MultiLayerNeighborSampler([15, 10, 5])
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5) >>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> dataloader = dgl.dataloading.EdgeDataLoader( >>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, train_eid, sampler, exclude='reverse_types', ... g, train_eid, sampler, exclude='reverse_types',
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment