Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
49e96970
Unverified
Commit
49e96970
authored
Sep 20, 2020
by
Quan (Andy) Gan
Committed by
GitHub
Sep 20, 2020
Browse files
[Doc] fix typos in PyTorch DataLoaders (#2216)
* fix doc * fix doc
parent
0b00562d
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
7 deletions
+7
-7
python/dgl/dataloading/pytorch/__init__.py
python/dgl/dataloading/pytorch/__init__.py
+7
-7
No files found.
python/dgl/dataloading/pytorch/__init__.py
View file @
49e96970
...
@@ -185,7 +185,7 @@ class NodeDataLoader:
...
@@ -185,7 +185,7 @@ class NodeDataLoader:
a homogeneous graph where each node takes messages from all neighbors (assume
a homogeneous graph where each node takes messages from all neighbors (assume
the backend is PyTorch):
the backend is PyTorch):
>>> sampler = dgl.dataloading.NeighborSampler([
None, None, None
])
>>> sampler = dgl.dataloading.
MultiLayer
NeighborSampler([
15, 10, 5
])
>>> dataloader = dgl.dataloading.NodeDataLoader(
>>> dataloader = dgl.dataloading.NodeDataLoader(
... g, train_nid, sampler,
... g, train_nid, sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
...
@@ -304,9 +304,9 @@ class EdgeDataLoader:
...
@@ -304,9 +304,9 @@ class EdgeDataLoader:
computation dependencies of the incident nodes. This is a common trick to avoid
computation dependencies of the incident nodes. This is a common trick to avoid
information leakage.
information leakage.
>>> sampler = dgl.dataloading.NeighborSampler([
None, None, None
])
>>> sampler = dgl.dataloading.
MultiLayer
NeighborSampler([
15, 10, 5
])
>>> dataloader = dgl.dataloading.EdgeDataLoader(
>>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, train_eid, sampler, exclude='reverse',
... g, train_eid, sampler, exclude='reverse
_id
',
... reverse_eids=reverse_eids,
... reverse_eids=reverse_eids,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pair_graph, blocks in dataloader:
>>> for input_nodes, pair_graph, blocks in dataloader:
...
@@ -316,10 +316,10 @@ class EdgeDataLoader:
...
@@ -316,10 +316,10 @@ class EdgeDataLoader:
homogeneous graph where each node takes messages from all neighbors (assume the
homogeneous graph where each node takes messages from all neighbors (assume the
backend is PyTorch), with 5 uniformly chosen negative samples per edge:
backend is PyTorch), with 5 uniformly chosen negative samples per edge:
>>> sampler = dgl.dataloading.NeighborSampler([
None, None, None
])
>>> sampler = dgl.dataloading.
MultiLayer
NeighborSampler([
15, 10, 5
])
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> dataloader = dgl.dataloading.EdgeDataLoader(
>>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, train_eid, sampler, exclude='reverse',
... g, train_eid, sampler, exclude='reverse
_id
',
... reverse_eids=reverse_eids, negative_sampler=neg_sampler,
... reverse_eids=reverse_eids, negative_sampler=neg_sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
>>> for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
...
@@ -338,7 +338,7 @@ class EdgeDataLoader:
...
@@ -338,7 +338,7 @@ class EdgeDataLoader:
To train a 3-layer GNN for edge classification on a set of edges ``train_eid`` with
To train a 3-layer GNN for edge classification on a set of edges ``train_eid`` with
type ``click``, you can write
type ``click``, you can write
>>> sampler = dgl.dataloading.NeighborSampler([
None, None, None
])
>>> sampler = dgl.dataloading.
MultiLayer
NeighborSampler([
15, 10, 5
])
>>> dataloader = dgl.dataloading.EdgeDataLoader(
>>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, {'click': train_eid}, sampler, exclude='reverse_types',
... g, {'click': train_eid}, sampler, exclude='reverse_types',
... reverse_etypes={'click': 'clicked-by', 'clicked-by': 'click'},
... reverse_etypes={'click': 'clicked-by', 'clicked-by': 'click'},
...
@@ -349,7 +349,7 @@ class EdgeDataLoader:
...
@@ -349,7 +349,7 @@ class EdgeDataLoader:
To train a 3-layer GNN for link prediction on a set of edges ``train_eid`` with type
To train a 3-layer GNN for link prediction on a set of edges ``train_eid`` with type
``click``, you can write
``click``, you can write
>>> sampler = dgl.dataloading.NeighborSampler([
None, None, None
])
>>> sampler = dgl.dataloading.
MultiLayer
NeighborSampler([
15, 10, 5
])
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> dataloader = dgl.dataloading.EdgeDataLoader(
>>> dataloader = dgl.dataloading.EdgeDataLoader(
... g, train_eid, sampler, exclude='reverse_types',
... g, train_eid, sampler, exclude='reverse_types',
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment