"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "1926331eaf59dae54aeb97cde19dae16c2fdaa48"
[KG][Model] Knowledge graph embeddings (#888)
* upd
* fig edgebatch edges
* add test
* trigger
* Update README.md for pytorch PinSage example.
Add noting that the PinSage model example under
example/pytorch/recommendation only work with Python 3.6+
as its dataset loader depends on stanfordnlp package
which work only with Python 3.6+.
* Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
1. make dgl.nn.xxx frame agnostic
2. make test.backend include dgl.nn modules
3. modify test_edge_softmax of test/mxnet/test_nn.py and
test/pytorch/test_nn.py work on both CPU and GPU
* Fix style
* Delete unused code
* Make agnostic test only related to tests/backend
1. clear all agnostic related code in dgl.nn
2. make test_graph_conv agnostic to cpu/gpu
* Fix code style
* fix
* doc
* Make all test code under tests.mxnet/pytorch.test_nn.py
work on both CPU and GPU.
* Fix syntex
* Remove rand
* Add TAGCN nn.module and example
* Now tagcn can run on CPU.
* Add unitest for TGConv
* Fix style
* For pubmed dataset, using --lr=0.005 can achieve better acc
* Fix style
* Fix some descriptions
* trigger
* Fix doc
* Add nn.TGConv and example
* Fix bug
* Update data in mxnet.tagcn test acc.
* Fix some comments and code
* delete useless code
* Fix namming
* Fix bug
* Fix bug
* Add test for mxnet TAGCov
* Add test code for mxnet TAGCov
* Update some docs
* Fix some code
* Update docs dgl.nn.mxnet
* Update weight init
* Fix
* init version.
* change default value of regularization.
* avoid specifying adversarial_temperature
* use default eval_interval.
* remove original model.
* remove optimizer.
* set default value of num_proc
* set default value of log_interval.
* don't need to set neg_sample_size_valid.
* remove unused code.
* use uni_weight by default.
* unify model.
* rename model.
* remove unnecessary data sampler.
* remove the code for checkpoint.
* fix eval.
* raise exception in invalid arguments.
* remove RowAdagrad.
* remove unsupported score function for now.
* Fix bugs of kg
Update README
* Update Readme for mxnet distmult
* Update README.md
* Update README.md
* revert changes on dmlc
* add tests.
* update CI.
* add tests script.
* reorder tests in CI.
* measure performance.
* add results on wn18
* remove some code.
* rename the training script.
* new results on TransE.
* remove --train.
* add format.
* fix.
* use EdgeSubgraph.
* create PBGNegEdgeSubgraph to simplify the code.
* fix test
* fix CI.
* run nose for unit tests.
* remove unused code in dataset.
* change argument to save embeddings.
* test training and eval scripts in CI.
* check Pytorch version.
* fix a minor problem in config.
* fix a minor bug.
* fix readme.
* Update README.md
* Update README.md
* Update README.md
Showing
apps/kg/README.md
0 → 100644
apps/kg/eval.py
0 → 100644
apps/kg/models/__init__.py
0 → 100644
apps/kg/tests/test_score.py
0 → 100644
apps/kg/train.py
0 → 100644
apps/kg/train_mxnet.py
0 → 100644
apps/kg/train_pytorch.py
0 → 100644
Please register or sign in to comment