• Da Zheng's avatar
    [KG][Model] Knowledge graph embeddings (#888) · 15b951d4
    Da Zheng authored
    * upd
    
    * fig edgebatch edges
    
    * add test
    
    * trigger
    
    * Update README.md for pytorch PinSage example.
    
    Add noting that the PinSage model example under
    example/pytorch/recommendation only work with Python 3.6+
    as its dataset loader depends on stanfordnlp package
    which work only with Python 3.6+.
    
    * Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
    
    1. make dgl.nn.xxx frame agnostic
    2. make test.backend include dgl.nn modules
    3. modify test_edge_softmax of test/mxnet/test_nn.py and
        test/pytorch/test_nn.py work on both CPU and GPU
    
    * Fix style
    
    * Delete unused code
    
    * Make agnostic test only related to tests/backend
    
    1. clear all agnostic related code in dgl.nn
    2. make test_graph_conv agnostic to cpu/gpu
    
    * Fix code style
    
    * fix
    
    * doc
    
    * Make all test code under tests.mxnet/pytorch.test_nn.py
    work on both CPU and GPU.
    
    * Fix syntex
    
    * Remove rand
    
    * Add TAGCN nn.module and example
    
    * Now tagcn can run on CPU.
    
    * Add unitest for TGConv
    
    * Fix style
    
    * For pubmed dataset, using --lr=0.005 can achieve better acc
    
    * Fix style
    
    * Fix some descriptions
    
    * trigger
    
    * Fix doc
    
    * Add nn.TGConv and example
    
    * Fix bug
    
    * Update data in mxnet.tagcn test acc.
    
    * Fix some comments and code
    
    * delete useless code
    
    * Fix namming
    
    * Fix bug
    
    * Fix bug
    
    * Add test for mxnet TAGCov
    
    * Add test code for mxnet TAGCov
    
    * Update some docs
    
    * Fix some code
    
    * Update docs dgl.nn.mxnet
    
    * Update weight init
    
    * Fix
    
    * init version.
    
    * change default value of regularization.
    
    * avoid specifying adversarial_temperature
    
    * use default eval_interval.
    
    * remove original model.
    
    * remove optimizer.
    
    * set default value of num_proc
    
    * set default value of log_interval.
    
    * don't need to set neg_sample_size_valid.
    
    * remove unused code.
    
    * use uni_weight by default.
    
    * unify model.
    
    * rename model.
    
    * remove unnecessary data sampler.
    
    * remove the code for checkpoint.
    
    * fix eval.
    
    * raise exception in invalid arguments.
    
    * remove RowAdagrad.
    
    * remove unsupported score function for now.
    
    * Fix bugs of kg
    Update README
    
    * Update Readme for mxnet distmult
    
    * Update README.md
    
    * Update README.md
    
    * revert changes on dmlc
    
    * add tests.
    
    * update CI.
    
    * add tests script.
    
    * reorder tests in CI.
    
    * measure performance.
    
    * add results on wn18
    
    * remove some code.
    
    * rename the training script.
    
    * new results on TransE.
    
    * remove --train.
    
    * add format.
    
    * fix.
    
    * use EdgeSubgraph.
    
    * create PBGNegEdgeSubgraph to simplify the code.
    
    * fix test
    
    * fix CI.
    
    * run nose for unit tests.
    
    * remove unused code in dataset.
    
    * change argument to save embeddings.
    
    * test training and eval scripts in CI.
    
    * check Pytorch version.
    
    * fix a minor problem in config.
    
    * fix a minor bug.
    
    * fix readme.
    
    * Update README.md
    
    * Update README.md
    
    * Update README.md
    15b951d4
sampler.py 12.2 KB