gcn_ns_sc.py 9.36 KB
Newer Older
Ziyue Huang's avatar
Ziyue Huang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse, time, math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data


class NodeUpdate(nn.Module):
    def __init__(self, in_feats, out_feats, activation=None, test=False, concat=False):
        super(NodeUpdate, self).__init__()
        self.linear = nn.Linear(in_feats, out_feats)
        self.activation = activation
        self.concat = concat
        self.test = test

    def forward(self, node):
        h = node.data['h']
        if self.test:
            h = h * node.data['norm']
        h = self.linear(h)
        # skip connection
        if self.concat:
            h = torch.cat((h, self.activation(h)), dim=1)
        elif self.activation:
            h = self.activation(h)
        return {'activation': h}


class GCNSampling(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCNSampling, self).__init__()
        self.n_layers = n_layers
        if dropout != 0:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = None
        self.layers = nn.ModuleList()
        # input layer
        skip_start = (0 == n_layers-1)
        self.layers.append(NodeUpdate(in_feats, n_hidden, activation, concat=skip_start))
        # hidden layers
        for i in range(1, n_layers):
            skip_start = (i == n_layers-1)
            self.layers.append(NodeUpdate(n_hidden, n_hidden, activation, concat=skip_start))
        # output layer
        self.layers.append(NodeUpdate(2*n_hidden, n_classes))

    def forward(self, nf):
        nf.layers[0].data['activation'] = nf.layers[0].data['features']

        for i, layer in enumerate(self.layers):
            h = nf.layers[i].data.pop('activation')
            if self.dropout:
                h = self.dropout(h)
            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             lambda node : {'h': node.mailbox['m'].mean(dim=1)},
                             layer)

        h = nf.layers[-1].data.pop('activation')
        return h


class GCNInfer(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation):
        super(GCNInfer, self).__init__()
        self.n_layers = n_layers
        self.layers = nn.ModuleList()
        # input layer
        skip_start = (0 == n_layers-1)
        self.layers.append(NodeUpdate(in_feats, n_hidden, activation, test=True, concat=skip_start))
        # hidden layers
        for i in range(1, n_layers):
            skip_start = (i == n_layers-1)
            self.layers.append(NodeUpdate(n_hidden, n_hidden, activation, test=True, concat=skip_start))
        # output layer
        self.layers.append(NodeUpdate(2*n_hidden, n_classes, test=True))

    def forward(self, nf):
        nf.layers[0].data['activation'] = nf.layers[0].data['features']

        for i, layer in enumerate(self.layers):
            h = nf.layers[i].data.pop('activation')
            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)

        h = nf.layers[-1].data.pop('activation')
        return h


def main(args):
    # load and preprocess dataset
    data = load_data(args)

    if args.self_loop and not args.dataset.startswith('reddit'):
        data.graph.add_edges_from([(i,i) for i in range(len(data.graph))])

    train_nid = np.nonzero(data.train_mask)[0].astype(np.int64)
    test_nid = np.nonzero(data.test_mask)[0].astype(np.int64)

    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
123
124
125
126
127
128
129
130
    if hasattr(torch, 'BoolTensor'):
        train_mask = torch.BoolTensor(data.train_mask)
        val_mask = torch.BoolTensor(data.val_mask)
        test_mask = torch.BoolTensor(data.test_mask)
    else:
        train_mask = torch.ByteTensor(data.train_mask)
        val_mask = torch.ByteTensor(data.val_mask)
        test_mask = torch.ByteTensor(data.test_mask)
Ziyue Huang's avatar
Ziyue Huang committed
131
132
133
134
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

Zihao Ye's avatar
Zihao Ye committed
135
136
137
    n_train_samples = train_mask.int().sum().item()
    n_val_samples = val_mask.int().sum().item()
    n_test_samples = test_mask.int().sum().item()
Ziyue Huang's avatar
Ziyue Huang committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              n_train_samples,
              n_val_samples,
              n_test_samples))

    # create GCN model
    g = DGLGraph(data.graph, readonly=True)
    norm = 1. / g.in_degrees().float().unsqueeze(1)

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
        norm = norm.cuda()

    g.ndata['features'] = features

    num_neighbors = args.num_neighbors

    g.ndata['norm'] = norm

    model = GCNSampling(in_feats,
                        args.n_hidden,
                        n_classes,
                        args.n_layers,
                        F.relu,
                        args.dropout)

    if cuda:
        model.cuda()

    loss_fcn = nn.CrossEntropyLoss()

    infer_model = GCNInfer(in_feats,
                           args.n_hidden,
                           n_classes,
                           args.n_layers,
                           F.relu)

    if cuda:
        infer_model.cuda()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.batch_size,
                                                       args.num_neighbors,
                                                       neighbor_type='in',
                                                       shuffle=True,
205
                                                       num_workers=32,
Ziyue Huang's avatar
Ziyue Huang committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                                                       num_hops=args.n_layers+1,
                                                       seed_nodes=train_nid):
            nf.copy_from_parent()
            model.train()
            # forward
            pred = model(nf)
            batch_nids = nf.layer_parent_nid(-1).to(device=pred.device, dtype=torch.long)
            batch_labels = labels[batch_nids]
            loss = loss_fcn(pred, batch_labels)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        for infer_param, param in zip(infer_model.parameters(), model.parameters()):
            infer_param.data.copy_(param.data)

        num_acc = 0.

        for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                       g.number_of_nodes(),
                                                       neighbor_type='in',
228
                                                       num_workers=32,
Ziyue Huang's avatar
Ziyue Huang committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                                                       num_hops=args.n_layers+1,
                                                       seed_nodes=test_nid):
            nf.copy_from_parent()
            infer_model.eval()
            with torch.no_grad():
                pred = infer_model(nf)
                batch_nids = nf.layer_parent_nid(-1).to(device=pred.device, dtype=torch.long)
                batch_labels = labels[batch_nids]
                num_acc += (pred.argmax(dim=1) == batch_labels).sum().cpu().item()

        print("Test Accuracy {:.4f}". format(num_acc/n_test_samples))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=3e-2,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
            help="number of training epochs")
    parser.add_argument("--batch-size", type=int, default=1000,
            help="batch size")
    parser.add_argument("--test-batch-size", type=int, default=1000,
            help="test batch size")
    parser.add_argument("--num-neighbors", type=int, default=3,
            help="number of neighbors to be sampled")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    parser.add_argument("--self-loop", action='store_true',
            help="graph self-loop (default=False)")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
            help="Weight for L2 loss")
    args = parser.parse_args()

    print(args)

    main(args)