citation.py 5.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import argparse
import time
import numpy as np
import networkx as nx
import mxnet as mx
from mxnet import gluon, nd
from mxnet.gluon import nn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.nn.mxnet.conv import GMMConv


class MoNet(nn.Block):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 out_feats,
                 n_layers,
                 dim,
Zihao Ye's avatar
Zihao Ye committed
21
22
                 n_kernels,
                 dropout):
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
        super(MoNet, self).__init__()
        self.g = g
        with self.name_scope():
            self.layers = nn.Sequential()
            self.pseudo_proj = nn.Sequential()

            # Input layer
            self.layers.add(
                GMMConv(in_feats, n_hidden, dim, n_kernels))
            self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))

            # Hidden layer
            for _ in range(n_layers - 1):
                self.layers.add(GMMConv(n_hidden, n_hidden, dim, n_kernels))
                self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))

            # Output layer
            self.layers.add(GMMConv(n_hidden, out_feats, dim, n_kernels))
            self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))

Zihao Ye's avatar
Zihao Ye committed
43
44
            self.dropout = nn.Dropout(dropout)

45
46
47
    def forward(self, feat, pseudo):
        h = feat
        for i in range(len(self.layers)):
Zihao Ye's avatar
Zihao Ye committed
48
49
            if i > 0:
                h = self.dropout(h)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            h = self.layers[i](
                self.g, h, self.pseudo_proj[i](pseudo))
        return h


def evaluate(model, features, pseudo, labels, mask):
    pred = model(features, pseudo).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = nd.array(data.features)
    labels = nd.array(data.labels)
    train_mask = nd.array(data.train_mask)
    val_mask = nd.array(data.val_mask)
    test_mask = nd.array(data.test_mask)

    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().asscalar(),
           val_mask.sum().asscalar(),
           test_mask.sum().asscalar()))

    if args.gpu < 0:
        ctx = mx.cpu(0)
    else:
        ctx = mx.gpu(args.gpu)
        print("use cuda:", args.gpu)

    features = features.as_in_context(ctx)
    labels = labels.as_in_context(ctx)
    train_mask = train_mask.as_in_context(ctx)
    val_mask = val_mask.as_in_context(ctx)
    test_mask = test_mask.as_in_context(ctx)

    # graph preprocess and calculate normalization factor
    g = data.graph
    g.remove_edges_from(nx.selfloop_edges(g))
    g = DGLGraph(g)
    n_edges = g.number_of_edges()
    us, vs = g.edges()
    pseudo = []
    for i in range(g.number_of_edges()):
        pseudo.append([
            1 / np.sqrt(g.in_degree(us[i].asscalar())),
            1 / np.sqrt(g.in_degree(vs[i].asscalar()))
        ])
    pseudo = nd.array(pseudo, ctx=ctx)

    # create GraphSAGE model
    model = MoNet(g,
                  in_feats,
                  args.n_hidden,
                  n_classes,
                  args.n_layers,
                  args.pseudo_dim,
                  args.n_kernels,
Zihao Ye's avatar
Zihao Ye committed
117
                  args.dropout
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
                  )
    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})


    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features, pseudo)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, pseudo, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, pseudo, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='MoNet on citation network')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--pseudo-dim", type=int, default=2,
                        help="Pseudo coordinate dimensions in GMMConv, 2 for cora and 3 for pubmed")
    parser.add_argument("--n-kernels", type=int, default=3,
                        help="Number of kernels in GMMConv layer")
    parser.add_argument("--weight-decay", type=float, default=5e-5,
                        help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)