"tools/vscode:/vscode.git/clone" did not exist on "b0a14513f0cc2ec774a0d5120c9f6e4d8bdcadba"
test_nn.py 24.6 KB
Newer Older
1
2
3
import mxnet as mx
import networkx as nx
import numpy as np
Minjie Wang's avatar
Minjie Wang committed
4
import scipy as sp
5
import pytest
6
7
import dgl
import dgl.nn.mxnet as nn
8
import dgl.function as fn
9
import backend as F
10
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
Minjie Wang's avatar
Minjie Wang committed
11
from mxnet import autograd, gluon, nd
12

13
14
def check_close(a, b):
    assert np.allclose(a.asnumpy(), b.asnumpy(), rtol=1e-4, atol=1e-4)
15
16
17
18
19
20
21
22

def _AXWb(A, X, W, b):
    X = mx.nd.dot(X, W.data(X.context))
    Y = mx.nd.dot(A, X.reshape(X.shape[0], -1)).reshape(X.shape)
    return Y + b.data(X.context)

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
23
24
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
25

26
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
27
28
    conv.initialize(ctx=ctx)
    # test#1: basic
29
    h0 = F.ones((3, 5))
30
    h1 = conv(g, h0)
31
32
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
33
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
34
    # test#2: more-dim
35
    h0 = F.ones((3, 5, 5))
36
    h1 = conv(g, h0)
37
38
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
39
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
40
41
42
43
44

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#3: basic
45
    h0 = F.ones((3, 5))
46
    h1 = conv(g, h0)
47
48
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
49
    # test#4: basic
50
    h0 = F.ones((3, 5, 5))
51
    h1 = conv(g, h0)
52
53
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
54
55
56
57
58
59

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    with autograd.train_mode():
        # test#3: basic
60
        h0 = F.ones((3, 5))
61
        h1 = conv(g, h0)
62
63
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
64
        # test#4: basic
65
        h0 = F.ones((3, 5, 5))
66
        h1 = conv(g, h0)
67
68
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
69

70
    # test not override features
71
    g.ndata["h"] = 2 * F.ones((3, 1))
72
    h1 = conv(g, h0)
73
74
75
    assert len(g.ndata) == 1
    assert len(g.edata) == 0
    assert "h" in g.ndata
76
    check_close(g.ndata['h'], 2 * F.ones((3, 1)))
77

78
79
80
81
82
83
84
85
86
87
88
@pytest.mark.parametrize('g', get_cases(['path', 'bipartite', 'small'], exclude=['zero-degree']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [False])
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    conv.initialize(ctx=F.ctx())
    ext_w = F.randn((5, 2)).as_in_context(F.ctx())
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).as_in_context(F.ctx())
89
    h_dst = F.randn((ndst, 2)).as_in_context(F.ctx())
90
    if weight:
91
        h_out = conv(g, h)
92
    else:
93
94
95
96
97
98
99
100
101
102
103
        h_out = conv(g, h, ext_w)
    assert h_out.shape == (ndst, 2)

    if not isinstance(g, dgl.DGLGraph) and len(g.ntypes) == 2:
        # bipartite, should also accept pair of tensors
        if weight:
            h_out2 = conv(g, (h, h_dst))
        else:
            h_out2 = conv(g, (h, h_dst), ext_w)
        assert h_out2.shape == (ndst, 2)
        assert F.array_equal(h_out, h_out2)
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = mx.nd.dot(A, X1.reshape(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = mx.nd.dot(A, X2.reshape(X2.shape[0], -1))
    X2 = X2 * N
    X = mx.nd.concat(X, X1, X2, dim=-1)
    Y = mx.nd.dot(X, W)

    return Y + b

def test_tagconv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = mx.nd.power(g.in_degrees().astype('float32'), -0.5)

    conv = nn.TAGConv(5, 2, bias=True)
    conv.initialize(ctx=ctx)
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.ndim - 1)
    norm = norm.reshape(shp).as_in_context(h0.context)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.data(ctx), conv.h_bias.data(ctx)))

    conv = nn.TAGConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#2: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert h1.shape[-1] == 2

145
146
147
def test_gat_conv():
    ctx = F.ctx()

148
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
149
150
151
152
153
    gat = nn.GATConv(10, 20, 5) # n_heads = 5
    gat.initialize(ctx=ctx)
    print(gat)

    # test#1: basic
154
155
156
    feat = F.randn((20, 10))
    h = gat(g, feat)
    assert h.shape == (20, 5, 20)
157

158
159
160
161
162
163
164
    # test#2: bipartite
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gat = nn.GATConv((5, 10), 2, 4)
    gat.initialize(ctx=ctx)
    feat = (F.randn((100, 5)), F.randn((200, 10)))
    h = gat(g, feat)
    assert h.shape == (200, 4, 2)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv(aggre_type):
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
    feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 200
192

Mufei Li's avatar
Mufei Li committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    # Test the case for graphs without edges
    g = dgl.bipartite([], num_nodes=(5, 3))
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage.initialize(ctx=ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def test_gg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gg_conv = nn.GatedGraphConv(10, 20, 3, 4) # n_step = 3, n_etypes = 4
    gg_conv.initialize(ctx=ctx)
    print(gg_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = gg_conv(g, h0, etypes)
    assert h1.shape == (20, 20)

def test_cheb_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    cheb = nn.ChebConv(10, 20, 3) # k = 3
    cheb.initialize(ctx=ctx)
    print(cheb)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = cheb(g, h0)
    assert h1.shape == (20, 20)

def test_agnn_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    agnn_conv = nn.AGNNConv(0.1, True)
    agnn_conv.initialize(ctx=ctx)
    print(agnn_conv)

    # test#1: basic
245
246
247
248
249
250
251
252
    feat = F.randn((20, 10))
    h = agnn_conv(g, feat)
    assert h.shape == (20, 10)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = agnn_conv(g, feat)
    assert h.shape == (200, 5)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

def test_appnp_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    appnp_conv = nn.APPNPConv(3, 0.1, 0)
    appnp_conv.initialize(ctx=ctx)
    print(appnp_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = appnp_conv(g, h0)
    assert h1.shape == (20, 10)

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).tostype('default')
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        cheb.initialize(ctx=ctx)
        dense_cheb.initialize(ctx=ctx)

        for i in range(len(cheb.fc)):
            dense_cheb.fc[i].weight.set_data(
                cheb.fc[i].weight.data())
            if cheb.bias is not None:
                dense_cheb.bias.set_data(
                    cheb.bias.data())

        feat = F.randn((100, 5))
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
        assert F.allclose(out_cheb, out_dense_cheb)

289
290
291
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_graph_conv(g, norm_type):
292
293
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
294
295
    conv = nn.GraphConv(5, 2, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=norm_type, bias=True)
296
297
298
299
300
301
    conv.initialize(ctx=ctx)
    dense_conv.initialize(ctx=ctx)
    dense_conv.weight.set_data(
        conv.weight.data())
    dense_conv.bias.set_data(
        conv.bias.data())
302
    feat = F.randn((g.number_of_src_nodes(), 5))
303
304
305
306
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
    assert F.allclose(out_conv, out_dense_conv)

307
308
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_sage_conv(g):
309
310
311
312
313
314
315
316
317
318
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    sage.initialize(ctx=ctx)
    dense_sage.initialize(ctx=ctx)
    dense_sage.fc.weight.set_data(
        sage.fc_neigh.weight.data())
    dense_sage.fc.bias.set_data(
        sage.fc_neigh.bias.data())
319
320
321
322
323
324
325
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
326
327
328
329
330

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)

331
332
@pytest.mark.parametrize('g', [random_dglgraph(20), random_graph(20), random_bipartite(20, 10)])
def test_edge_conv(g):
333
334
335
336
337
338
339
    ctx = F.ctx()

    edge_conv = nn.EdgeConv(5, 2)
    edge_conv.initialize(ctx=ctx)
    print(edge_conv)

    # test #1: basic
340
341
342
343
344
345
346
    h0 = F.randn((g.number_of_src_nodes(), 5))
    if not g.is_homograph():
        # bipartite
        h1 = edge_conv(g, (h0, h0[:10]))
    else:
        h1 = edge_conv(g, h0)
    assert h1.shape == (g.number_of_dst_nodes(), 2)
347
348
349
350
351
352
353
354
355
356

def test_gin_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gin_conv = nn.GINConv(lambda x: x, 'mean', 0.1)
    gin_conv.initialize(ctx=ctx)
    print(gin_conv)

    # test #1: basic
357
358
359
360
361
362
363
364
365
366
    feat = F.randn((g.number_of_nodes(), 5))
    h = gin_conv(g, feat)
    assert h.shape == (20, 5)

    # test #2: bipartite
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = gin_conv(g, feat)
    return h.shape == (20, 5)

367
368
369
370

def test_gmm_conv():
    ctx = F.ctx()

371
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
372
373
    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
374
375
376
377
378
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)
379

380
381
382
    g = dgl.graph(nx.erdos_renyi_graph(20, 0.3))
    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
383
384
385
386
387
388
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)

389
390
391
392
393
394
395
396
397
398
    g = dgl.bipartite(sp.sparse.random(20, 10, 0.1))
    gmm_conv = nn.GMMConv((5, 4), 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
    # test #1: basic
    h0 = F.randn((g.number_of_src_nodes(), 5))
    hd = F.randn((g.number_of_dst_nodes(), 4))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, (h0, hd), pseudo)
    assert h1.shape == (g.number_of_dst_nodes(), 2)

399
400
401
def test_nn_conv():
    ctx = F.ctx()

402
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
403
404
    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
405
406
407
408
409
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)
410

411
412
413
    g = dgl.graph(nx.erdos_renyi_graph(20, 0.3))
    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
414
415
416
417
418
419
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)

420
421
422
423
424
425
426
427
428
429
    g = dgl.bipartite(sp.sparse.random(20, 10, 0.3))
    nn_conv = nn.NNConv((5, 4), 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
    # test #1: basic
    h0 = F.randn((g.number_of_src_nodes(), 5))
    hd = F.randn((g.number_of_dst_nodes(), 4))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, (h0, hd), etypes)
    assert h1.shape == (g.number_of_dst_nodes(), 2)

430
431
432
433
434
435
436
437
438
439
440
441
442
def test_sg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    sgc = nn.SGConv(5, 2, 2)
    sgc.initialize(ctx=ctx)
    print(sgc)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sgc(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)

443
444
def test_set2set():
    g = dgl.DGLGraph(nx.path_graph(10))
445
    ctx = F.ctx()
446
447

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
448
    s2s.initialize(ctx=ctx)
449
450
451
    print(s2s)

    # test#1: basic
452
    h0 = F.randn((g.number_of_nodes(), 5))
453
    h1 = s2s(g, h0)
454
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
455
456
457

    # test#2: batched graph
    bg = dgl.batch([g, g, g])
458
    h0 = F.randn((bg.number_of_nodes(), 5))
459
    h1 = s2s(bg, h0)
460
461
462
463
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.ndim == 2

def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))
464
    ctx = F.ctx()
465
466

    gap = nn.GlobalAttentionPooling(gluon.nn.Dense(1), gluon.nn.Dense(10))
467
    gap.initialize(ctx=ctx)
468
469
    print(gap)
    # test#1: basic
470
    h0 = F.randn((g.number_of_nodes(), 5))
471
    h1 = gap(g, h0)
472
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
473
474
475

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
476
    h0 = F.randn((bg.number_of_nodes(), 5))
477
    h1 = gap(bg, h0)
478
479
480
481
482
483
484
485
486
487
488
489
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2

def test_simple_pool():
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
490
    h0 = F.randn((g.number_of_nodes(), 5))
491
    h1 = sum_pool(g, h0)
492
    check_close(F.squeeze(h1, 0), F.sum(h0, 0))
493
    h1 = avg_pool(g, h0)
494
    check_close(F.squeeze(h1, 0), F.mean(h0, 0))
495
    h1 = max_pool(g, h0)
496
    check_close(F.squeeze(h1, 0), F.max(h0, 0))
497
    h1 = sort_pool(g, h0)
498
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
499
500
501
502

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
503
    h0 = F.randn((bg.number_of_nodes(), 5))
504
    h1 = sum_pool(bg, h0)
505
506
507
508
509
    truth = mx.nd.stack(F.sum(h0[:15], 0),
                        F.sum(h0[15:20], 0),
                        F.sum(h0[20:35], 0),
                        F.sum(h0[35:40], 0),
                        F.sum(h0[40:55], 0), axis=0)
510
511
    check_close(h1, truth)

512
    h1 = avg_pool(bg, h0)
513
514
515
516
517
    truth = mx.nd.stack(F.mean(h0[:15], 0),
                        F.mean(h0[15:20], 0),
                        F.mean(h0[20:35], 0),
                        F.mean(h0[35:40], 0),
                        F.mean(h0[40:55], 0), axis=0)
518
519
    check_close(h1, truth)

520
    h1 = max_pool(bg, h0)
521
522
523
524
525
    truth = mx.nd.stack(F.max(h0[:15], 0),
                        F.max(h0[15:20], 0),
                        F.max(h0[20:35], 0),
                        F.max(h0[35:40], 0),
                        F.max(h0[40:55], 0), axis=0)
526
527
    check_close(h1, truth)

528
    h1 = sort_pool(bg, h0)
529
530
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

531
532
533
534
535
536
537
538
def uniform_attention(g, shape):
    a = mx.nd.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).reshape(target_shape).astype('float32')

def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
539
    edata = F.ones((g.number_of_edges(), 1))
540
    a = nn.edge_softmax(g, edata)
541
542
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
543
544
545
546
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

    # Test higher dimension case
547
    edata = F.ones((g.number_of_edges(), 3, 1))
548
    a = nn.edge_softmax(g, edata)
549
550
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
551
552
553
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.attach_grad()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with mx.autograd.record():
        y_1 = nn.edge_softmax(g, score, eids)
        y_1.backward(grad)
        grad_1 = score.grad

    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with mx.autograd.record():
        y_2 = nn.edge_softmax(subg, score)
        y_2.backward(grad)
        grad_2 = score.grad

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

Minjie Wang's avatar
Minjie Wang committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = nd.zeros((g.number_of_edges(), 1), ctx=ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randint(0, I, (100,), ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
def test_sequential():
    ctx = F.ctx()
    # test single graph
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # test multiple graphs
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.reshape(graph.number_of_nodes() // 2, 2, -1).sum(1)

    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05))
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2))
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8))
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
def test_hetero_conv(agg):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]})
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    conv.initialize(ctx=F.ctx())
    print(conv)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)
    conv.initialize(ctx=F.ctx())

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(mx.gluon.nn.Block):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None):  # mxnet does not support kwargs
            if arg1 is not None:
                self.carg1 += 1
            return F.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    conv.initialize(ctx=F.ctx())
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args)
    assert mod1.carg1 == 1
    assert mod2.carg1 == 1
    assert mod3.carg1 == 0

790
791
if __name__ == '__main__':
    test_graph_conv()
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    test_gat_conv()
    test_sage_conv()
    test_gg_conv()
    test_cheb_conv()
    test_agnn_conv()
    test_appnp_conv()
    test_dense_cheb_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_edge_conv()
    test_gin_conv()
    test_gmm_conv()
    test_nn_conv()
    test_sg_conv()
806
    test_edge_softmax()
807
    test_partial_edge_softmax()
808
809
810
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
Minjie Wang's avatar
Minjie Wang committed
811
    test_rgcn()
812
    test_sequential()