test_nn.py 17.2 KB
Newer Older
1
2
3
import mxnet as mx
import networkx as nx
import numpy as np
Minjie Wang's avatar
Minjie Wang committed
4
import scipy as sp
5
6
import dgl
import dgl.nn.mxnet as nn
7
import dgl.function as fn
8
import backend as F
Minjie Wang's avatar
Minjie Wang committed
9
from mxnet import autograd, gluon, nd
10

11
12
def check_close(a, b):
    assert np.allclose(a.asnumpy(), b.asnumpy(), rtol=1e-4, atol=1e-4)
13
14
15
16
17
18
19
20

def _AXWb(A, X, W, b):
    X = mx.nd.dot(X, W.data(X.context))
    Y = mx.nd.dot(A, X.reshape(X.shape[0], -1)).reshape(X.shape)
    return Y + b.data(X.context)

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
21
22
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
23
24
25
26

    conv = nn.GraphConv(5, 2, norm=False, bias=True)
    conv.initialize(ctx=ctx)
    # test#1: basic
27
    h0 = F.ones((3, 5))
28
    h1 = conv(g, h0)
29
30
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
31
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
32
    # test#2: more-dim
33
    h0 = F.ones((3, 5, 5))
34
    h1 = conv(g, h0)
35
36
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
37
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
38
39
40
41
42

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#3: basic
43
    h0 = F.ones((3, 5))
44
    h1 = conv(g, h0)
45
46
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
47
    # test#4: basic
48
    h0 = F.ones((3, 5, 5))
49
    h1 = conv(g, h0)
50
51
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
52
53
54
55
56
57

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    with autograd.train_mode():
        # test#3: basic
58
        h0 = F.ones((3, 5))
59
        h1 = conv(g, h0)
60
61
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
62
        # test#4: basic
63
        h0 = F.ones((3, 5, 5))
64
        h1 = conv(g, h0)
65
66
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
67

68
    # test not override features
69
    g.ndata["h"] = 2 * F.ones((3, 1))
70
    h1 = conv(g, h0)
71
72
73
    assert len(g.ndata) == 1
    assert len(g.edata) == 0
    assert "h" in g.ndata
74
    check_close(g.ndata['h'], 2 * F.ones((3, 1)))
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = mx.nd.dot(A, X1.reshape(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = mx.nd.dot(A, X2.reshape(X2.shape[0], -1))
    X2 = X2 * N
    X = mx.nd.concat(X, X1, X2, dim=-1)
    Y = mx.nd.dot(X, W)

    return Y + b

def test_tagconv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = mx.nd.power(g.in_degrees().astype('float32'), -0.5)

    conv = nn.TAGConv(5, 2, bias=True)
    conv.initialize(ctx=ctx)
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.ndim - 1)
    norm = norm.reshape(shp).as_in_context(h0.context)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.data(ctx), conv.h_bias.data(ctx)))

    conv = nn.TAGConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#2: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert h1.shape[-1] == 2

116
117
118
119
120
121
122
123
124
125
126
127
128
129
def test_gat_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gat = nn.GATConv(10, 20, 5) # n_heads = 5
    gat.initialize(ctx=ctx)
    print(gat)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = gat(g, h0)
    assert h1.shape == (20, 5, 20)

def test_sage_conv():
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    for aggre_type in ['mean', 'pool', 'gcn']:
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
        sage = nn.SAGEConv(5, 10, aggre_type)
        feat = F.randn((100, 5))
        sage.initialize(ctx=ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 10

        g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
        sage = nn.SAGEConv(5, 10, aggre_type)
        feat = F.randn((100, 5))
        sage.initialize(ctx=ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 10

        g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
        dst_dim = 5 if aggre_type != 'gcn' else 10
        sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
        feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
        sage.initialize(ctx=ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 200
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

def test_gg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gg_conv = nn.GatedGraphConv(10, 20, 3, 4) # n_step = 3, n_etypes = 4
    gg_conv.initialize(ctx=ctx)
    print(gg_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = gg_conv(g, h0, etypes)
    assert h1.shape == (20, 20)

def test_cheb_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    cheb = nn.ChebConv(10, 20, 3) # k = 3
    cheb.initialize(ctx=ctx)
    print(cheb)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = cheb(g, h0)
    assert h1.shape == (20, 20)

def test_agnn_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    agnn_conv = nn.AGNNConv(0.1, True)
    agnn_conv.initialize(ctx=ctx)
    print(agnn_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = agnn_conv(g, h0)
    assert h1.shape == (20, 10)

def test_appnp_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    appnp_conv = nn.APPNPConv(3, 0.1, 0)
    appnp_conv.initialize(ctx=ctx)
    print(appnp_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = appnp_conv(g, h0)
    assert h1.shape == (20, 10)

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).tostype('default')
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        cheb.initialize(ctx=ctx)
        dense_cheb.initialize(ctx=ctx)

        for i in range(len(cheb.fc)):
            dense_cheb.fc[i].weight.set_data(
                cheb.fc[i].weight.data())
            if cheb.bias is not None:
                dense_cheb.bias.set_data(
                    cheb.bias.data())

        feat = F.randn((100, 5))
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
        assert F.allclose(out_cheb, out_dense_cheb)

def test_dense_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    conv = nn.GraphConv(5, 2, norm=False, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=False, bias=True)
    conv.initialize(ctx=ctx)
    dense_conv.initialize(ctx=ctx)
    dense_conv.weight.set_data(
        conv.weight.data())
    dense_conv.bias.set_data(
        conv.bias.data())
    feat = F.randn((100, 5))

    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
    assert F.allclose(out_conv, out_dense_conv)

def test_dense_sage_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    sage.initialize(ctx=ctx)
    dense_sage.initialize(ctx=ctx)
    dense_sage.fc.weight.set_data(
        sage.fc_neigh.weight.data())
    dense_sage.fc.bias.set_data(
        sage.fc_neigh.bias.data())
    feat = F.randn((100, 5))

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)

def test_edge_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    edge_conv = nn.EdgeConv(5, 2)
    edge_conv.initialize(ctx=ctx)
    print(edge_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = edge_conv(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)

def test_gin_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gin_conv = nn.GINConv(lambda x: x, 'mean', 0.1)
    gin_conv.initialize(ctx=ctx)
    print(gin_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gin_conv(g, h0)
    assert h1.shape == (g.number_of_nodes(), 5)

def test_gmm_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
    print(gmm_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)

def test_nn_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
    print(nn_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)

def test_sg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    sgc = nn.SGConv(5, 2, 2)
    sgc.initialize(ctx=ctx)
    print(sgc)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sgc(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)

333
334
def test_set2set():
    g = dgl.DGLGraph(nx.path_graph(10))
335
    ctx = F.ctx()
336
337

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
338
    s2s.initialize(ctx=ctx)
339
340
341
    print(s2s)

    # test#1: basic
342
    h0 = F.randn((g.number_of_nodes(), 5))
343
    h1 = s2s(g, h0)
344
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
345
346
347

    # test#2: batched graph
    bg = dgl.batch([g, g, g])
348
    h0 = F.randn((bg.number_of_nodes(), 5))
349
    h1 = s2s(bg, h0)
350
351
352
353
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.ndim == 2

def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))
354
    ctx = F.ctx()
355
356

    gap = nn.GlobalAttentionPooling(gluon.nn.Dense(1), gluon.nn.Dense(10))
357
    gap.initialize(ctx=ctx)
358
359
    print(gap)
    # test#1: basic
360
    h0 = F.randn((g.number_of_nodes(), 5))
361
    h1 = gap(g, h0)
362
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
363
364
365

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
366
    h0 = F.randn((bg.number_of_nodes(), 5))
367
    h1 = gap(bg, h0)
368
369
370
371
372
373
374
375
376
377
378
379
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2

def test_simple_pool():
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
380
    h0 = F.randn((g.number_of_nodes(), 5))
381
    h1 = sum_pool(g, h0)
382
    check_close(F.squeeze(h1, 0), F.sum(h0, 0))
383
    h1 = avg_pool(g, h0)
384
    check_close(F.squeeze(h1, 0), F.mean(h0, 0))
385
    h1 = max_pool(g, h0)
386
    check_close(F.squeeze(h1, 0), F.max(h0, 0))
387
    h1 = sort_pool(g, h0)
388
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
389
390
391
392

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
393
    h0 = F.randn((bg.number_of_nodes(), 5))
394
    h1 = sum_pool(bg, h0)
395
396
397
398
399
    truth = mx.nd.stack(F.sum(h0[:15], 0),
                        F.sum(h0[15:20], 0),
                        F.sum(h0[20:35], 0),
                        F.sum(h0[35:40], 0),
                        F.sum(h0[40:55], 0), axis=0)
400
401
    check_close(h1, truth)

402
    h1 = avg_pool(bg, h0)
403
404
405
406
407
    truth = mx.nd.stack(F.mean(h0[:15], 0),
                        F.mean(h0[15:20], 0),
                        F.mean(h0[20:35], 0),
                        F.mean(h0[35:40], 0),
                        F.mean(h0[40:55], 0), axis=0)
408
409
    check_close(h1, truth)

410
    h1 = max_pool(bg, h0)
411
412
413
414
415
    truth = mx.nd.stack(F.max(h0[:15], 0),
                        F.max(h0[15:20], 0),
                        F.max(h0[20:35], 0),
                        F.max(h0[35:40], 0),
                        F.max(h0[40:55], 0), axis=0)
416
417
    check_close(h1, truth)

418
    h1 = sort_pool(bg, h0)
419
420
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

421
422
423
424
425
426
427
428
def uniform_attention(g, shape):
    a = mx.nd.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).reshape(target_shape).astype('float32')

def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
429
    edata = F.ones((g.number_of_edges(), 1))
430
    a = nn.edge_softmax(g, edata)
431
432
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
433
434
435
436
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

    # Test higher dimension case
437
    edata = F.ones((g.number_of_edges(), 3, 1))
438
    a = nn.edge_softmax(g, edata)
439
440
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
441
442
443
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.attach_grad()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with mx.autograd.record():
        y_1 = nn.edge_softmax(g, score, eids)
        y_1.backward(grad)
        grad_1 = score.grad

    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with mx.autograd.record():
        y_2 = nn.edge_softmax(subg, score)
        y_2.backward(grad)
        grad_2 = score.grad

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

Minjie Wang's avatar
Minjie Wang committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = nd.zeros((g.number_of_edges(), 1), ctx=ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randint(0, I, (100,), ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
def test_sequential():
    ctx = F.ctx()
    # test single graph
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # test multiple graphs
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.reshape(graph.number_of_nodes() // 2, 2, -1).sum(1)

    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05))
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2))
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8))
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

579
580
if __name__ == '__main__':
    test_graph_conv()
581
582
583
584
585
586
587
588
589
590
591
592
593
594
    test_gat_conv()
    test_sage_conv()
    test_gg_conv()
    test_cheb_conv()
    test_agnn_conv()
    test_appnp_conv()
    test_dense_cheb_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_edge_conv()
    test_gin_conv()
    test_gmm_conv()
    test_nn_conv()
    test_sg_conv()
595
    test_edge_softmax()
596
    test_partial_edge_softmax()
597
598
599
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
Minjie Wang's avatar
Minjie Wang committed
600
    test_rgcn()
601
    test_sequential()