launch.py 21.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
"""Launching tool for DGL distributed training"""
import os
import stat
import sys
import subprocess
import argparse
import signal
import logging
import time
10
import json
11
import multiprocessing
12
13
import re
from functools import partial
14
from threading import Thread
15
from typing import Optional
16

17
18
DEFAULT_PORT = 30050

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def cleanup_proc(get_all_remote_pids, conn):
    '''This process tries to clean up the remote training tasks.
    '''
    print('cleanupu process runs')
    # This process should not handle SIGINT.
    signal.signal(signal.SIGINT, signal.SIG_IGN)

    data = conn.recv()
    # If the launch process exits normally, this process doesn't need to do anything.
    if data == 'exit':
        sys.exit(0)
    else:
        remote_pids = get_all_remote_pids()
        # Otherwise, we need to ssh to each machine and kill the training jobs.
        for (ip, port), pids in remote_pids.items():
            kill_process(ip, port, pids)
    print('cleanup process exits')

def kill_process(ip, port, pids):
    '''ssh to a remote machine and kill the specified processes.
    '''
    curr_pid = os.getpid()
    killed_pids = []
    # If we kill child processes first, the parent process may create more again. This happens
    # to Python's process pool. After sorting, we always kill parent processes first.
    pids.sort()
    for pid in pids:
        assert curr_pid != pid
        print('kill process {} on {}:{}'.format(pid, ip, port), flush=True)
        kill_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'kill {}\''.format(pid)
        subprocess.run(kill_cmd, shell=True)
        killed_pids.append(pid)
    # It's possible that some of the processes are not killed. Let's try again.
    for i in range(3):
        killed_pids = get_killed_pids(ip, port, killed_pids)
        if len(killed_pids) == 0:
            break
        else:
            killed_pids.sort()
            for pid in killed_pids:
                print('kill process {} on {}:{}'.format(pid, ip, port), flush=True)
                kill_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'kill -9 {}\''.format(pid)
                subprocess.run(kill_cmd, shell=True)

def get_killed_pids(ip, port, killed_pids):
    '''Get the process IDs that we want to kill but are still alive.
    '''
    killed_pids = [str(pid) for pid in killed_pids]
    killed_pids = ','.join(killed_pids)
    ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'ps -p {} -h\''.format(killed_pids)
    res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
    pids = []
    for p in res.stdout.decode('utf-8').split('\n'):
        l = p.split()
        if len(l) > 0:
            pids.append(int(l[0]))
    return pids

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def execute_remote(
    cmd: str,
    ip: str,
    port: int,
    username: Optional[str] = ""
) -> Thread:
    """Execute command line on remote machine via ssh.

    Args:
        cmd: User-defined command (udf) to execute on the remote host.
        ip: The ip-address of the host to run the command on.
        port: Port number that the host is listening on.
        thread_list:
        username: Optional. If given, this will specify a username to use when issuing commands over SSH.
            Useful when your infra requires you to explicitly specify a username to avoid permission issues.

    Returns:
        thread: The Thread whose run() is to run the `cmd` on the remote host. Returns when the cmd completes
            on the remote host.
    """
    ip_prefix = ""
    if username:
        ip_prefix += "{username}@".format(username=username)

    # Construct ssh command that executes `cmd` on the remote host
    ssh_cmd = "ssh -o StrictHostKeyChecking=no -p {port} {ip_prefix}{ip} '{cmd}'".format(
        port=str(port),
        ip_prefix=ip_prefix,
        ip=ip,
        cmd=cmd,
    )

109
    # thread func to run the job
110
111
    def run(ssh_cmd):
        subprocess.check_call(ssh_cmd, shell=True)
112

113
    thread = Thread(target=run, args=(ssh_cmd,))
114
115
    thread.setDaemon(True)
    thread.start()
116
    return thread
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def get_remote_pids(ip, port, cmd_regex):
    """Get the process IDs that run the command in the remote machine.
    """
    pids = []
    curr_pid = os.getpid()
    # Here we want to get the python processes. We may get some ssh processes, so we should filter them out.
    ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'ps -aux | grep python | grep -v StrictHostKeyChecking\''
    res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
    for p in res.stdout.decode('utf-8').split('\n'):
        l = p.split()
        if len(l) < 2:
            continue
        # We only get the processes that run the specified command.
        res = re.search(cmd_regex, p)
        if res is not None and int(l[1]) != curr_pid:
            pids.append(l[1])

    pid_str = ','.join([str(pid) for pid in pids])
    ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'pgrep -P {}\''.format(pid_str)
    res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
    pids1 = res.stdout.decode('utf-8').split('\n')
    all_pids = []
    for pid in set(pids + pids1):
        if pid == '' or int(pid) == curr_pid:
            continue
        all_pids.append(int(pid))
    all_pids.sort()
    return all_pids

def get_all_remote_pids(hosts, ssh_port, udf_command):
    '''Get all remote processes.
    '''
    remote_pids = {}
    for node_id, host in enumerate(hosts):
        ip, _ = host
        # When creating training processes in remote machines, we may insert some arguments
        # in the commands. We need to use regular expressions to match the modified command.
        cmds = udf_command.split()
        new_udf_command = ' .*'.join(cmds)
        pids = get_remote_pids(ip, ssh_port, new_udf_command)
        remote_pids[(ip, ssh_port)] = pids
    return remote_pids

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

def construct_torch_dist_launcher_cmd(
    num_trainers: int,
    num_nodes: int,
    node_rank: int,
    master_addr: str,
    master_port: int
) -> str:
    """Constructs the torch distributed launcher command.
    Helper function.

    Args:
        num_trainers:
        num_nodes:
        node_rank:
        master_addr:
        master_port:

    Returns:
        cmd_str.
    """
    torch_cmd_template = "-m torch.distributed.launch " \
                         "--nproc_per_node={nproc_per_node} " \
                         "--nnodes={nnodes} " \
                         "--node_rank={node_rank} " \
                         "--master_addr={master_addr} " \
                         "--master_port={master_port}"
    return torch_cmd_template.format(
        nproc_per_node=num_trainers,
        nnodes=num_nodes,
        node_rank=node_rank,
        master_addr=master_addr,
        master_port=master_port
    )


def wrap_udf_in_torch_dist_launcher(
    udf_command: str,
    num_trainers: int,
    num_nodes: int,
    node_rank: int,
    master_addr: str,
    master_port: int,
) -> str:
    """Wraps the user-defined function (udf_command) with the torch.distributed.launch module.

     Example: if udf_command is "python3 run/some/trainer.py arg1 arg2", then new_df_command becomes:
         "python3 -m torch.distributed.launch <TORCH DIST ARGS> run/some/trainer.py arg1 arg2

    udf_command is assumed to consist of pre-commands (optional) followed by the python launcher script (required):
    Examples:
        # simple
        python3.7 path/to/some/trainer.py arg1 arg2

        # multi-commands
        (cd some/dir && python3.7 path/to/some/trainer.py arg1 arg2)

    IMPORTANT: If udf_command consists of multiple python commands, then this will result in undefined behavior.

    Args:
        udf_command:
        num_trainers:
        num_nodes:
        node_rank:
        master_addr:
        master_port:

    Returns:

    """
    torch_dist_cmd = construct_torch_dist_launcher_cmd(
        num_trainers=num_trainers,
        num_nodes=num_nodes,
        node_rank=node_rank,
        master_addr=master_addr,
        master_port=master_port
    )
    # Auto-detect the python binary that kicks off the distributed trainer code.
    # Note: This allowlist order matters, this will match with the FIRST matching entry. Thus, please add names to this
    #       from most-specific to least-specific order eg:
    #           (python3.7, python3.8) -> (python3)
    # The allowed python versions are from this: https://www.dgl.ai/pages/start.html
    python_bin_allowlist = (
        "python3.6", "python3.7", "python3.8", "python3.9", "python3",
        # for backwards compatibility, accept python2 but technically DGL is a py3 library, so this is not recommended
        "python2.7", "python2",
    )
    # If none of the candidate python bins match, then we go with the default `python`
    python_bin = "python"
    for candidate_python_bin in python_bin_allowlist:
        if candidate_python_bin in udf_command:
            python_bin = candidate_python_bin
            break

    # transforms the udf_command from:
    #     python path/to/dist_trainer.py arg0 arg1
    # to:
    #     python -m torch.distributed.launch [DIST TORCH ARGS] path/to/dist_trainer.py arg0 arg1
    # Note: if there are multiple python commands in `udf_command`, this may do the Wrong Thing, eg launch each
    #       python command within the torch distributed launcher.
    new_udf_command = udf_command.replace(python_bin, f"{python_bin} {torch_dist_cmd}")

    return new_udf_command


266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def construct_dgl_server_env_vars(
    num_samplers: int,
    num_server_threads: int,
    tot_num_clients: int,
    part_config: str,
    ip_config: str,
    num_servers: int,
    graph_format: str,
) -> str:
    """Constructs the DGL server-specific env vars string that are required for DGL code to behave in the correct
    server role.
    Convenience function.

    Args:
        num_samplers:
        num_server_threads:
        tot_num_clients:
        part_config: Partition config.
            Relative path to workspace.
        ip_config: IP config file containing IP addresses of cluster hosts.
            Relative path to workspace.
        num_servers:
        graph_format:

    Returns:
        server_env_vars: The server-specific env-vars in a string format, friendly for CLI execution.

    """
    server_env_vars_template = (
        "DGL_ROLE={DGL_ROLE} "
        "DGL_NUM_SAMPLER={DGL_NUM_SAMPLER} "
        "OMP_NUM_THREADS={OMP_NUM_THREADS} "
        "DGL_NUM_CLIENT={DGL_NUM_CLIENT} "
        "DGL_CONF_PATH={DGL_CONF_PATH} "
        "DGL_IP_CONFIG={DGL_IP_CONFIG} "
        "DGL_NUM_SERVER={DGL_NUM_SERVER} "
        "DGL_GRAPH_FORMAT={DGL_GRAPH_FORMAT} "
    )
    return server_env_vars_template.format(
        DGL_ROLE="server",
        DGL_NUM_SAMPLER=num_samplers,
        OMP_NUM_THREADS=num_server_threads,
        DGL_NUM_CLIENT=tot_num_clients,
        DGL_CONF_PATH=part_config,
        DGL_IP_CONFIG=ip_config,
        DGL_NUM_SERVER=num_servers,
        DGL_GRAPH_FORMAT=graph_format,
    )


def construct_dgl_client_env_vars(
    num_samplers: int,
    tot_num_clients: int,
    part_config: str,
    ip_config: str,
    num_servers: int,
    graph_format: str,
    num_omp_threads: int,
    pythonpath: Optional[str] = "",
) -> str:
    """Constructs the DGL client-specific env vars string that are required for DGL code to behave in the correct
    client role.
    Convenience function.

    Args:
        num_samplers:
        tot_num_clients:
        part_config: Partition config.
            Relative path to workspace.
        ip_config: IP config file containing IP addresses of cluster hosts.
            Relative path to workspace.
        num_servers:
        graph_format:
        num_omp_threads:
        pythonpath: Optional. If given, this will pass this as PYTHONPATH.

    Returns:
        client_env_vars: The client-specific env-vars in a string format, friendly for CLI execution.

    """
    client_env_vars_template = (
        "DGL_DIST_MODE={DGL_DIST_MODE} "
        "DGL_ROLE={DGL_ROLE} "
        "DGL_NUM_SAMPLER={DGL_NUM_SAMPLER} "
        "DGL_NUM_CLIENT={DGL_NUM_CLIENT} "
        "DGL_CONF_PATH={DGL_CONF_PATH} "
        "DGL_IP_CONFIG={DGL_IP_CONFIG} "
        "DGL_NUM_SERVER={DGL_NUM_SERVER} "
        "DGL_GRAPH_FORMAT={DGL_GRAPH_FORMAT} "
        "OMP_NUM_THREADS={OMP_NUM_THREADS} "
        "{suffix_optional_envvars}"
    )
    # append optional additional env-vars
    suffix_optional_envvars = ""
    if pythonpath:
        suffix_optional_envvars += f"PYTHONPATH={pythonpath} "
    return client_env_vars_template.format(
        DGL_DIST_MODE="distributed",
        DGL_ROLE="client",
        DGL_NUM_SAMPLER=num_samplers,
        DGL_NUM_CLIENT=tot_num_clients,
        DGL_CONF_PATH=part_config,
        DGL_IP_CONFIG=ip_config,
        DGL_NUM_SERVER=num_servers,
        DGL_GRAPH_FORMAT=graph_format,
        OMP_NUM_THREADS=num_omp_threads,
        suffix_optional_envvars=suffix_optional_envvars,
    )


def wrap_cmd_with_local_envvars(cmd: str, env_vars: str) -> str:
    """Wraps a CLI command with desired env vars with the following properties:
    (1) env vars persist for the entire `cmd`, even if it consists of multiple "chained" commands like:
        cmd = "ls && pwd && python run/something.py"
    (2) env vars don't pollute the environment after `cmd` completes.

    Example:
        >>> cmd = "ls && pwd"
        >>> env_vars = "VAR1=value1 VAR2=value2"
        >>> wrap_cmd_with_local_envvars(cmd, env_vars)
        "(export VAR1=value1 VAR2=value2; ls && pwd)"

    Args:
        cmd:
        env_vars: A string containing env vars, eg "VAR1=val1 VAR2=val2"

    Returns:
        cmd_with_env_vars:

    """
    # use `export` to persist env vars for entire cmd block. required if udf_command is a chain of commands
    # also: wrap in parens to not pollute env:
    #     https://stackoverflow.com/a/45993803
    return f"(export {env_vars}; {cmd})"


402
403
404
405
406
def submit_jobs(args, udf_command):
    """Submit distributed jobs (server and client processes) via ssh"""
    hosts = []
    thread_list = []
    server_count_per_machine = 0
407
408

    # Get the IP addresses of the cluster.
409
    ip_config = os.path.join(args.workspace, args.ip_config)
410
411
    with open(ip_config) as f:
        for line in f:
412
413
414
415
416
417
418
419
420
421
422
423
            result = line.strip().split()
            if len(result) == 2:
                ip = result[0]
                port = int(result[1])
                hosts.append((ip, port))
            elif len(result) == 1:
                ip = result[0]
                port = DEFAULT_PORT
                hosts.append((ip, port))
            else:
                raise RuntimeError("Format error of ip_config.")
            server_count_per_machine = args.num_servers
424
    # Get partition info of the graph data
425
    part_config = os.path.join(args.workspace, args.part_config)
426
427
428
429
430
431
432
433
    with open(part_config) as conf_f:
        part_metadata = json.load(conf_f)
    assert 'num_parts' in part_metadata, 'num_parts does not exist.'
    # The number of partitions must match the number of machines in the cluster.
    assert part_metadata['num_parts'] == len(hosts), \
            'The number of graph partitions has to match the number of machines in the cluster.'

    tot_num_clients = args.num_trainers * (1 + args.num_samplers) * len(hosts)
434
    # launch server tasks
435
436
437
438
439
440
441
442
443
444
    server_env_vars = construct_dgl_server_env_vars(
        num_samplers=args.num_samplers,
        num_server_threads=args.num_server_threads,
        tot_num_clients=tot_num_clients,
        part_config=args.part_config,
        ip_config=args.ip_config,
        num_servers=args.num_servers,
        graph_format=args.graph_format,
    )
    for i in range(len(hosts) * server_count_per_machine):
445
        ip, _ = hosts[int(i / server_count_per_machine)]
446
447
        server_env_vars_cur = f"{server_env_vars} DGL_SERVER_ID={i}"
        cmd = wrap_cmd_with_local_envvars(udf_command, server_env_vars_cur)
448
        cmd = 'cd ' + str(args.workspace) + '; ' + cmd
449
        thread_list.append(execute_remote(cmd, ip, args.ssh_port, username=args.ssh_username))
450

451
    # launch client tasks
452
453
454
455
456
457
458
459
460
461
    client_env_vars = construct_dgl_client_env_vars(
        num_samplers=args.num_samplers,
        tot_num_clients=tot_num_clients,
        part_config=args.part_config,
        ip_config=args.ip_config,
        num_servers=args.num_servers,
        graph_format=args.graph_format,
        num_omp_threads=os.environ.get("OMP_NUM_THREADS", str(args.num_omp_threads)),
        pythonpath=os.environ.get("PYTHONPATH", ""),
    )
462

Da Zheng's avatar
Da Zheng committed
463
464
    for node_id, host in enumerate(hosts):
        ip, _ = host
465
466
467
468
469
470
471
472
473
        # Transform udf_command to follow torch's dist launcher format: `PYTHON_BIN -m torch.distributed.launch ... UDF`
        torch_dist_udf_command = wrap_udf_in_torch_dist_launcher(
            udf_command=udf_command,
            num_trainers=args.num_trainers,
            num_nodes=len(hosts),
            node_rank=node_id,
            master_addr=hosts[0][0],
            master_port=1234,
        )
474
        cmd = wrap_cmd_with_local_envvars(torch_dist_udf_command, client_env_vars)
475
        cmd = 'cd ' + str(args.workspace) + '; ' + cmd
476
        thread_list.append(execute_remote(cmd, ip, args.ssh_port, username=args.ssh_username))
477

478
479
480
481
482
483
484
485
486
487
488
489
490
    # Start a cleanup process dedicated for cleaning up remote training jobs.
    conn1,conn2 = multiprocessing.Pipe()
    func = partial(get_all_remote_pids, hosts, args.ssh_port, udf_command)
    process = multiprocessing.Process(target=cleanup_proc, args=(func, conn1))
    process.start()

    def signal_handler(signal, frame):
        logging.info('Stop launcher')
        # We need to tell the cleanup process to kill remote training jobs.
        conn2.send('cleanup')
        sys.exit(0)
    signal.signal(signal.SIGINT, signal_handler)

491
492
    for thread in thread_list:
        thread.join()
493
494
495
496
    # The training processes complete. We should tell the cleanup process to exit.
    conn2.send('exit')
    process.join()

497
498
499

def main():
    parser = argparse.ArgumentParser(description='Launch a distributed job')
500
    parser.add_argument('--ssh_port', type=int, default=22, help='SSH Port.')
501
502
503
504
505
506
    parser.add_argument(
        "--ssh_username", default="",
        help="Optional. When issuing commands (via ssh) to cluster, use the provided username in the ssh cmd. "
             "Example: If you provide --ssh_username=bob, then the ssh command will be like: 'ssh bob@1.2.3.4 CMD' "
             "instead of 'ssh 1.2.3.4 CMD'"
    )
507
508
509
510
    parser.add_argument('--workspace', type=str,
                        help='Path of user directory of distributed tasks. \
                        This is used to specify a destination location where \
                        the contents of current directory will be rsyncd')
511
512
    parser.add_argument('--num_trainers', type=int,
                        help='The number of trainer processes per machine')
513
514
    parser.add_argument('--num_omp_threads', type=int,
                        help='The number of OMP threads per trainer')
515
    parser.add_argument('--num_samplers', type=int, default=0,
516
                        help='The number of sampler processes per trainer process')
517
518
    parser.add_argument('--num_servers', type=int,
                        help='The number of server processes per machine')
519
520
521
    parser.add_argument('--part_config', type=str,
                        help='The file (in workspace) of the partition config')
    parser.add_argument('--ip_config', type=str,
522
                        help='The file (in workspace) of IP configuration for server processes')
523
524
525
526
    parser.add_argument('--num_server_threads', type=int, default=1,
                        help='The number of OMP threads in the server process. \
                        It should be small if server processes and trainer processes run on \
                        the same machine. By default, it is 1.')
527
528
529
530
    parser.add_argument('--graph_format', type=str, default='csc',
                        help='The format of the graph structure of each partition. \
                        The allowed formats are csr, csc and coo. A user can specify multiple \
                        formats, separated by ",". For example, the graph format is "csr,csc".')
531
532
    args, udf_command = parser.parse_known_args()
    assert len(udf_command) == 1, 'Please provide user command line.'
533
534
535
536
537
538
539
540
541
542
543
544
    assert args.num_trainers is not None and args.num_trainers > 0, \
            '--num_trainers must be a positive number.'
    assert args.num_samplers is not None and args.num_samplers >= 0, \
            '--num_samplers must be a non-negative number.'
    assert args.num_servers is not None and args.num_servers > 0, \
            '--num_servers must be a positive number.'
    assert args.num_server_threads > 0, '--num_server_threads must be a positive number.'
    assert args.workspace is not None, 'A user has to specify a workspace with --workspace.'
    assert args.part_config is not None, \
            'A user has to specify a partition configuration file with --part_config.'
    assert args.ip_config is not None, \
            'A user has to specify an IP configuration file with --ip_config.'
545
546
547
548
549
550
    if args.num_omp_threads is None:
        # Here we assume all machines have the same number of CPU cores as the machine
        # where the launch script runs.
        args.num_omp_threads = max(multiprocessing.cpu_count() // 2 // args.num_trainers, 1)
        print('The number of OMP threads per trainer is set to', args.num_omp_threads)

551
552
    udf_command = str(udf_command[0])
    if 'python' not in udf_command:
553
        raise RuntimeError("DGL launching script can only support Python executable file.")
554
555
556
557
558
559
    submit_jobs(args, udf_command)

if __name__ == '__main__':
    fmt = '%(asctime)s %(levelname)s %(message)s'
    logging.basicConfig(format=fmt, level=logging.INFO)
    main()