launch.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
"""Launching tool for DGL distributed training"""
import os
import stat
import sys
import subprocess
import argparse
import signal
import logging
import time
10
import json
11
import multiprocessing
12
13
import re
from functools import partial
14
from threading import Thread
15
from typing import Optional
16

17
18
DEFAULT_PORT = 30050

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def cleanup_proc(get_all_remote_pids, conn):
    '''This process tries to clean up the remote training tasks.
    '''
    print('cleanupu process runs')
    # This process should not handle SIGINT.
    signal.signal(signal.SIGINT, signal.SIG_IGN)

    data = conn.recv()
    # If the launch process exits normally, this process doesn't need to do anything.
    if data == 'exit':
        sys.exit(0)
    else:
        remote_pids = get_all_remote_pids()
        # Otherwise, we need to ssh to each machine and kill the training jobs.
        for (ip, port), pids in remote_pids.items():
            kill_process(ip, port, pids)
    print('cleanup process exits')

def kill_process(ip, port, pids):
    '''ssh to a remote machine and kill the specified processes.
    '''
    curr_pid = os.getpid()
    killed_pids = []
    # If we kill child processes first, the parent process may create more again. This happens
    # to Python's process pool. After sorting, we always kill parent processes first.
    pids.sort()
    for pid in pids:
        assert curr_pid != pid
        print('kill process {} on {}:{}'.format(pid, ip, port), flush=True)
        kill_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'kill {}\''.format(pid)
        subprocess.run(kill_cmd, shell=True)
        killed_pids.append(pid)
    # It's possible that some of the processes are not killed. Let's try again.
    for i in range(3):
        killed_pids = get_killed_pids(ip, port, killed_pids)
        if len(killed_pids) == 0:
            break
        else:
            killed_pids.sort()
            for pid in killed_pids:
                print('kill process {} on {}:{}'.format(pid, ip, port), flush=True)
                kill_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'kill -9 {}\''.format(pid)
                subprocess.run(kill_cmd, shell=True)

def get_killed_pids(ip, port, killed_pids):
    '''Get the process IDs that we want to kill but are still alive.
    '''
    killed_pids = [str(pid) for pid in killed_pids]
    killed_pids = ','.join(killed_pids)
    ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'ps -p {} -h\''.format(killed_pids)
    res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
    pids = []
    for p in res.stdout.decode('utf-8').split('\n'):
        l = p.split()
        if len(l) > 0:
            pids.append(int(l[0]))
    return pids

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def execute_remote(
    cmd: str,
    ip: str,
    port: int,
    username: Optional[str] = ""
) -> Thread:
    """Execute command line on remote machine via ssh.

    Args:
        cmd: User-defined command (udf) to execute on the remote host.
        ip: The ip-address of the host to run the command on.
        port: Port number that the host is listening on.
        thread_list:
        username: Optional. If given, this will specify a username to use when issuing commands over SSH.
            Useful when your infra requires you to explicitly specify a username to avoid permission issues.

    Returns:
        thread: The Thread whose run() is to run the `cmd` on the remote host. Returns when the cmd completes
            on the remote host.
    """
    ip_prefix = ""
    if username:
        ip_prefix += "{username}@".format(username=username)

    # Construct ssh command that executes `cmd` on the remote host
    ssh_cmd = "ssh -o StrictHostKeyChecking=no -p {port} {ip_prefix}{ip} '{cmd}'".format(
        port=str(port),
        ip_prefix=ip_prefix,
        ip=ip,
        cmd=cmd,
    )

109
    # thread func to run the job
110
111
    def run(ssh_cmd):
        subprocess.check_call(ssh_cmd, shell=True)
112

113
    thread = Thread(target=run, args=(ssh_cmd,))
114
115
    thread.setDaemon(True)
    thread.start()
116
    return thread
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def get_remote_pids(ip, port, cmd_regex):
    """Get the process IDs that run the command in the remote machine.
    """
    pids = []
    curr_pid = os.getpid()
    # Here we want to get the python processes. We may get some ssh processes, so we should filter them out.
    ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'ps -aux | grep python | grep -v StrictHostKeyChecking\''
    res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
    for p in res.stdout.decode('utf-8').split('\n'):
        l = p.split()
        if len(l) < 2:
            continue
        # We only get the processes that run the specified command.
        res = re.search(cmd_regex, p)
        if res is not None and int(l[1]) != curr_pid:
            pids.append(l[1])

    pid_str = ','.join([str(pid) for pid in pids])
    ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'pgrep -P {}\''.format(pid_str)
    res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE)
    pids1 = res.stdout.decode('utf-8').split('\n')
    all_pids = []
    for pid in set(pids + pids1):
        if pid == '' or int(pid) == curr_pid:
            continue
        all_pids.append(int(pid))
    all_pids.sort()
    return all_pids

def get_all_remote_pids(hosts, ssh_port, udf_command):
    '''Get all remote processes.
    '''
    remote_pids = {}
    for node_id, host in enumerate(hosts):
        ip, _ = host
        # When creating training processes in remote machines, we may insert some arguments
        # in the commands. We need to use regular expressions to match the modified command.
        cmds = udf_command.split()
        new_udf_command = ' .*'.join(cmds)
        pids = get_remote_pids(ip, ssh_port, new_udf_command)
        remote_pids[(ip, ssh_port)] = pids
    return remote_pids

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

def construct_torch_dist_launcher_cmd(
    num_trainers: int,
    num_nodes: int,
    node_rank: int,
    master_addr: str,
    master_port: int
) -> str:
    """Constructs the torch distributed launcher command.
    Helper function.

    Args:
        num_trainers:
        num_nodes:
        node_rank:
        master_addr:
        master_port:

    Returns:
        cmd_str.
    """
    torch_cmd_template = "-m torch.distributed.launch " \
                         "--nproc_per_node={nproc_per_node} " \
                         "--nnodes={nnodes} " \
                         "--node_rank={node_rank} " \
                         "--master_addr={master_addr} " \
                         "--master_port={master_port}"
    return torch_cmd_template.format(
        nproc_per_node=num_trainers,
        nnodes=num_nodes,
        node_rank=node_rank,
        master_addr=master_addr,
        master_port=master_port
    )


def wrap_udf_in_torch_dist_launcher(
    udf_command: str,
    num_trainers: int,
    num_nodes: int,
    node_rank: int,
    master_addr: str,
    master_port: int,
) -> str:
    """Wraps the user-defined function (udf_command) with the torch.distributed.launch module.

     Example: if udf_command is "python3 run/some/trainer.py arg1 arg2", then new_df_command becomes:
         "python3 -m torch.distributed.launch <TORCH DIST ARGS> run/some/trainer.py arg1 arg2

    udf_command is assumed to consist of pre-commands (optional) followed by the python launcher script (required):
    Examples:
        # simple
        python3.7 path/to/some/trainer.py arg1 arg2

        # multi-commands
        (cd some/dir && python3.7 path/to/some/trainer.py arg1 arg2)

    IMPORTANT: If udf_command consists of multiple python commands, then this will result in undefined behavior.

    Args:
        udf_command:
        num_trainers:
        num_nodes:
        node_rank:
        master_addr:
        master_port:

    Returns:

    """
    torch_dist_cmd = construct_torch_dist_launcher_cmd(
        num_trainers=num_trainers,
        num_nodes=num_nodes,
        node_rank=node_rank,
        master_addr=master_addr,
        master_port=master_port
    )
    # Auto-detect the python binary that kicks off the distributed trainer code.
    # Note: This allowlist order matters, this will match with the FIRST matching entry. Thus, please add names to this
    #       from most-specific to least-specific order eg:
    #           (python3.7, python3.8) -> (python3)
    # The allowed python versions are from this: https://www.dgl.ai/pages/start.html
    python_bin_allowlist = (
        "python3.6", "python3.7", "python3.8", "python3.9", "python3",
        # for backwards compatibility, accept python2 but technically DGL is a py3 library, so this is not recommended
        "python2.7", "python2",
    )
    # If none of the candidate python bins match, then we go with the default `python`
    python_bin = "python"
    for candidate_python_bin in python_bin_allowlist:
        if candidate_python_bin in udf_command:
            python_bin = candidate_python_bin
            break

    # transforms the udf_command from:
    #     python path/to/dist_trainer.py arg0 arg1
    # to:
    #     python -m torch.distributed.launch [DIST TORCH ARGS] path/to/dist_trainer.py arg0 arg1
    # Note: if there are multiple python commands in `udf_command`, this may do the Wrong Thing, eg launch each
    #       python command within the torch distributed launcher.
    new_udf_command = udf_command.replace(python_bin, f"{python_bin} {torch_dist_cmd}")

    return new_udf_command


266
267
268
269
270
def submit_jobs(args, udf_command):
    """Submit distributed jobs (server and client processes) via ssh"""
    hosts = []
    thread_list = []
    server_count_per_machine = 0
271
272

    # Get the IP addresses of the cluster.
273
274
275
    ip_config = args.workspace + '/' + args.ip_config
    with open(ip_config) as f:
        for line in f:
276
277
278
279
280
281
282
283
284
285
286
287
            result = line.strip().split()
            if len(result) == 2:
                ip = result[0]
                port = int(result[1])
                hosts.append((ip, port))
            elif len(result) == 1:
                ip = result[0]
                port = DEFAULT_PORT
                hosts.append((ip, port))
            else:
                raise RuntimeError("Format error of ip_config.")
            server_count_per_machine = args.num_servers
288
289
290
291
292
293
294
295
296
297
    # Get partition info of the graph data
    part_config = args.workspace + '/' + args.part_config
    with open(part_config) as conf_f:
        part_metadata = json.load(conf_f)
    assert 'num_parts' in part_metadata, 'num_parts does not exist.'
    # The number of partitions must match the number of machines in the cluster.
    assert part_metadata['num_parts'] == len(hosts), \
            'The number of graph partitions has to match the number of machines in the cluster.'

    tot_num_clients = args.num_trainers * (1 + args.num_samplers) * len(hosts)
298
    # launch server tasks
299
    server_cmd = 'DGL_ROLE=server DGL_NUM_SAMPLER=' + str(args.num_samplers)
300
    server_cmd = server_cmd + ' ' + 'OMP_NUM_THREADS=' + str(args.num_server_threads)
301
    server_cmd = server_cmd + ' ' + 'DGL_NUM_CLIENT=' + str(tot_num_clients)
302
    server_cmd = server_cmd + ' ' + 'DGL_CONF_PATH=' + str(args.part_config)
303
    server_cmd = server_cmd + ' ' + 'DGL_IP_CONFIG=' + str(args.ip_config)
304
    server_cmd = server_cmd + ' ' + 'DGL_NUM_SERVER=' + str(args.num_servers)
305
    server_cmd = server_cmd + ' ' + 'DGL_GRAPH_FORMAT=' + str(args.graph_format)
306
307
308
309
310
    for i in range(len(hosts)*server_count_per_machine):
        ip, _ = hosts[int(i / server_count_per_machine)]
        cmd = server_cmd + ' ' + 'DGL_SERVER_ID=' + str(i)
        cmd = cmd + ' ' + udf_command
        cmd = 'cd ' + str(args.workspace) + '; ' + cmd
311
        thread_list.append(execute_remote(cmd, ip, args.ssh_port, username=args.ssh_username))
312

313
    # launch client tasks
314
    client_cmd = 'DGL_DIST_MODE="distributed" DGL_ROLE=client DGL_NUM_SAMPLER=' + str(args.num_samplers)
315
    client_cmd = client_cmd + ' ' + 'DGL_NUM_CLIENT=' + str(tot_num_clients)
316
    client_cmd = client_cmd + ' ' + 'DGL_CONF_PATH=' + str(args.part_config)
317
    client_cmd = client_cmd + ' ' + 'DGL_IP_CONFIG=' + str(args.ip_config)
318
    client_cmd = client_cmd + ' ' + 'DGL_NUM_SERVER=' + str(args.num_servers)
319
320
    if os.environ.get('OMP_NUM_THREADS') is not None:
        client_cmd = client_cmd + ' ' + 'OMP_NUM_THREADS=' + os.environ.get('OMP_NUM_THREADS')
321
322
    else:
        client_cmd = client_cmd + ' ' + 'OMP_NUM_THREADS=' + str(args.num_omp_threads)
323
324
    if os.environ.get('PYTHONPATH') is not None:
        client_cmd = client_cmd + ' ' + 'PYTHONPATH=' + os.environ.get('PYTHONPATH')
325
    client_cmd = client_cmd + ' ' + 'DGL_GRAPH_FORMAT=' + str(args.graph_format)
326

Da Zheng's avatar
Da Zheng committed
327
328
    for node_id, host in enumerate(hosts):
        ip, _ = host
329
330
331
332
333
334
335
336
337
338
        # Transform udf_command to follow torch's dist launcher format: `PYTHON_BIN -m torch.distributed.launch ... UDF`
        torch_dist_udf_command = wrap_udf_in_torch_dist_launcher(
            udf_command=udf_command,
            num_trainers=args.num_trainers,
            num_nodes=len(hosts),
            node_rank=node_id,
            master_addr=hosts[0][0],
            master_port=1234,
        )
        cmd = client_cmd + ' ' + torch_dist_udf_command
339
        cmd = 'cd ' + str(args.workspace) + '; ' + cmd
340
        thread_list.append(execute_remote(cmd, ip, args.ssh_port, username=args.ssh_username))
341

342
343
344
345
346
347
348
349
350
351
352
353
354
    # Start a cleanup process dedicated for cleaning up remote training jobs.
    conn1,conn2 = multiprocessing.Pipe()
    func = partial(get_all_remote_pids, hosts, args.ssh_port, udf_command)
    process = multiprocessing.Process(target=cleanup_proc, args=(func, conn1))
    process.start()

    def signal_handler(signal, frame):
        logging.info('Stop launcher')
        # We need to tell the cleanup process to kill remote training jobs.
        conn2.send('cleanup')
        sys.exit(0)
    signal.signal(signal.SIGINT, signal_handler)

355
356
    for thread in thread_list:
        thread.join()
357
358
359
360
    # The training processes complete. We should tell the cleanup process to exit.
    conn2.send('exit')
    process.join()

361
362
363

def main():
    parser = argparse.ArgumentParser(description='Launch a distributed job')
364
    parser.add_argument('--ssh_port', type=int, default=22, help='SSH Port.')
365
366
367
368
369
370
    parser.add_argument(
        "--ssh_username", default="",
        help="Optional. When issuing commands (via ssh) to cluster, use the provided username in the ssh cmd. "
             "Example: If you provide --ssh_username=bob, then the ssh command will be like: 'ssh bob@1.2.3.4 CMD' "
             "instead of 'ssh 1.2.3.4 CMD'"
    )
371
372
373
374
    parser.add_argument('--workspace', type=str,
                        help='Path of user directory of distributed tasks. \
                        This is used to specify a destination location where \
                        the contents of current directory will be rsyncd')
375
376
    parser.add_argument('--num_trainers', type=int,
                        help='The number of trainer processes per machine')
377
378
    parser.add_argument('--num_omp_threads', type=int,
                        help='The number of OMP threads per trainer')
379
    parser.add_argument('--num_samplers', type=int, default=0,
380
                        help='The number of sampler processes per trainer process')
381
382
    parser.add_argument('--num_servers', type=int,
                        help='The number of server processes per machine')
383
384
385
    parser.add_argument('--part_config', type=str,
                        help='The file (in workspace) of the partition config')
    parser.add_argument('--ip_config', type=str,
386
                        help='The file (in workspace) of IP configuration for server processes')
387
388
389
390
    parser.add_argument('--num_server_threads', type=int, default=1,
                        help='The number of OMP threads in the server process. \
                        It should be small if server processes and trainer processes run on \
                        the same machine. By default, it is 1.')
391
392
393
394
    parser.add_argument('--graph_format', type=str, default='csc',
                        help='The format of the graph structure of each partition. \
                        The allowed formats are csr, csc and coo. A user can specify multiple \
                        formats, separated by ",". For example, the graph format is "csr,csc".')
395
396
    args, udf_command = parser.parse_known_args()
    assert len(udf_command) == 1, 'Please provide user command line.'
397
398
399
400
401
402
403
404
405
406
407
408
    assert args.num_trainers is not None and args.num_trainers > 0, \
            '--num_trainers must be a positive number.'
    assert args.num_samplers is not None and args.num_samplers >= 0, \
            '--num_samplers must be a non-negative number.'
    assert args.num_servers is not None and args.num_servers > 0, \
            '--num_servers must be a positive number.'
    assert args.num_server_threads > 0, '--num_server_threads must be a positive number.'
    assert args.workspace is not None, 'A user has to specify a workspace with --workspace.'
    assert args.part_config is not None, \
            'A user has to specify a partition configuration file with --part_config.'
    assert args.ip_config is not None, \
            'A user has to specify an IP configuration file with --ip_config.'
409
410
411
412
413
414
    if args.num_omp_threads is None:
        # Here we assume all machines have the same number of CPU cores as the machine
        # where the launch script runs.
        args.num_omp_threads = max(multiprocessing.cpu_count() // 2 // args.num_trainers, 1)
        print('The number of OMP threads per trainer is set to', args.num_omp_threads)

415
416
    udf_command = str(udf_command[0])
    if 'python' not in udf_command:
417
        raise RuntimeError("DGL launching script can only support Python executable file.")
418
419
420
421
422
423
    submit_jobs(args, udf_command)

if __name__ == '__main__':
    fmt = '%(asctime)s %(levelname)s %(message)s'
    logging.basicConfig(format=fmt, level=logging.INFO)
    main()