spmat_op_impl.cc 26.2 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief Sparse matrix operator CPU implementation
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>
9
#include <numeric>
10
#include "array_utils.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
Da Zheng's avatar
Da Zheng committed
25
26
27
28
29
30
31
32
33
  if (csr.sorted) {
    const IdType *start = indices_data + indptr_data[row];
    const IdType *end = indices_data + indptr_data[row + 1];
    return std::binary_search(start, end, col);
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row + 1]; ++i) {
      if (indices_data[i] == col) {
        return true;
      }
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    }
  }
  return false;
}

template bool CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    *(rst_data++) = CSRIsNonZero<XPU, IdType>(csr, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, NDArray, NDArray);

///////////////////////////// CSRHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType src = 0; src < csr.num_rows; ++src) {
    std::unordered_set<IdType> hashmap;
    for (IdType eid = indptr_data[src]; eid < indptr_data[src+1]; ++eid) {
      const IdType dst = indices_data[eid];
      if (hashmap.count(dst)) {
        return true;
      } else {
        hashmap.insert(dst);
      }
    }
  }
  return false;
}

template bool CSRHasDuplicate<kDLCPU, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  return indptr_data[row + 1] - indptr_data[row];
}

template int64_t CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
98
  CHECK_SAME_DTYPE(csr.indices, rows);
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  for (int64_t i = 0; i < len; ++i) {
    const auto vid = vid_data[i];
    rst_data[i] = indptr_data[vid + 1] - indptr_data[vid];
  }
  return rst;
}

template NDArray CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, NDArray);

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

template NDArray CSRGetRowColumnIndices<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLCPU, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetRowData /////////////////////////////

129
template <DLDeviceType XPU, typename IdType>
130
131
132
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
133
134
135
136
137
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  if (CSRHasData(csr))
    return csr.data.CreateView({len}, csr.data->dtype, offset);
  else
    return aten::Range(offset, offset + len, csr.indptr->dtype.bits, csr.indptr->ctx);
138
139
}

140
141
template NDArray CSRGetRowData<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLCPU, int64_t>(CSRMatrix, int64_t);
142
143
144

///////////////////////////// CSRGetData /////////////////////////////

145
146
template <DLDeviceType XPU, typename IdType>
void CollectDataFromSorted(const IdType *indices_data, const IdType *data,
Da Zheng's avatar
Da Zheng committed
147
                           const IdType start, const IdType end, const IdType col,
148
                           std::vector<IdType> *ret_vec) {
Da Zheng's avatar
Da Zheng committed
149
150
151
152
153
154
155
156
157
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
158
      ret_vec->push_back(data? data[idx] : idx);
Da Zheng's avatar
Da Zheng committed
159
160
161
162
163
164
165
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

166
template <DLDeviceType XPU, typename IdType>
167
NDArray CSRGetData(CSRMatrix csr, int64_t row, int64_t col) {
168
  std::vector<IdType> ret_vec;
169
170
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
171
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
Da Zheng's avatar
Da Zheng committed
172
  if (csr.sorted) {
173
174
175
    CollectDataFromSorted<XPU, IdType>(indices_data, data,
                                       indptr_data[row], indptr_data[row + 1],
                                       col, &ret_vec);
Da Zheng's avatar
Da Zheng committed
176
177
178
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row+1]; ++i) {
      if (indices_data[i] == col) {
179
        ret_vec.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
180
      }
181
182
    }
  }
183
  return NDArray::FromVector(ret_vec, csr.data->ctx);
184
185
}

186
187
template NDArray CSRGetData<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template NDArray CSRGetData<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);
188

189
template <DLDeviceType XPU, typename IdType>
190
191
192
193
194
195
196
197
198
199
200
201
202
203
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
204
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
205

206
  std::vector<IdType> ret_vec;
207
208
209
210
211

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
212
    if (csr.sorted) {
213
214
215
      CollectDataFromSorted<XPU, IdType>(indices_data, data,
                                         indptr_data[row_id], indptr_data[row_id + 1],
                                         col_id, &ret_vec);
Da Zheng's avatar
Da Zheng committed
216
217
218
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
219
          ret_vec.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
220
        }
221
222
223
224
      }
    }
  }

225
  return NDArray::FromVector(ret_vec, csr.data->ctx);
226
227
}

228
229
template NDArray CSRGetData<kDLCPU, int32_t>(CSRMatrix csr, NDArray rows, NDArray cols);
template NDArray CSRGetData<kDLCPU, int64_t>(CSRMatrix csr, NDArray rows, NDArray cols);
230
231
232

///////////////////////////// CSRGetDataAndIndices /////////////////////////////

233
234
template <DLDeviceType XPU, typename IdType>
void CollectDataIndicesFromSorted(const IdType *indices_data, const IdType *data,
Da Zheng's avatar
Da Zheng committed
235
236
                                  const IdType start, const IdType end, const IdType col,
                                  std::vector<IdType> *col_vec,
237
                                  std::vector<IdType> *ret_vec) {
Da Zheng's avatar
Da Zheng committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
      col_vec->push_back(indices_data[idx]);
      ret_vec->push_back(data[idx]);
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

256
template <DLDeviceType XPU, typename IdType>
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray rows, NDArray cols) {
  // TODO(minjie): more efficient implementation for matrix without duplicate entries
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
272
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
273
274

  std::vector<IdType> ret_rows, ret_cols;
275
  std::vector<IdType> ret_data;
276
277
278
279
280

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
281
282
    if (csr.sorted) {
      // Here we collect col indices and data.
283
284
285
286
287
      CollectDataIndicesFromSorted<XPU, IdType>(indices_data, data,
                                                indptr_data[row_id],
                                                indptr_data[row_id + 1],
                                                col_id, &ret_cols,
                                                &ret_data);
Da Zheng's avatar
Da Zheng committed
288
289
290
291
292
293
294
      // We need to add row Ids.
      while (ret_rows.size() < ret_data.size()) {
        ret_rows.push_back(row_id);
      }
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
295
296
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
297
          ret_data.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
298
        }
299
300
301
302
      }
    }
  }

303
304
305
  return {NDArray::FromVector(ret_rows, csr.indptr->ctx),
          NDArray::FromVector(ret_cols, csr.indptr->ctx),
          NDArray::FromVector(ret_data, csr.data->ctx)};
306
307
}

308
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int32_t>(
309
    CSRMatrix csr, NDArray rows, NDArray cols);
310
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int64_t>(
311
312
313
314
315
316
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRTranspose /////////////////////////////

// for a matrix of shape (N, M) and NNZ
// complexity: time O(NNZ + max(N, M)), space O(1)
317
template <DLDeviceType XPU, typename IdType>
318
319
320
321
322
323
CSRMatrix CSRTranspose(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* Ap = static_cast<IdType*>(csr.indptr->data);
  const IdType* Aj = static_cast<IdType*>(csr.indices->data);
324
  const IdType* Ax = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
325
326
  NDArray ret_indptr = NDArray::Empty({M + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray ret_indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
327
  NDArray ret_data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
328
329
  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);
330
  IdType* Bx = static_cast<IdType*>(ret_data->data);
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

  std::fill(Bp, Bp + M, 0);

  for (int64_t j = 0; j < nnz; ++j) {
    Bp[Aj[j]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < M; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[M] = nnz;

  for (int64_t i = 0; i < N; ++i) {
    for (IdType j = Ap[i]; j < Ap[i+1]; ++j) {
      const IdType dst = Aj[j];
      Bi[Bp[dst]] = i;
350
      Bx[Bp[dst]] = Ax? Ax[j] : j;
351
352
353
354
355
356
357
358
359
360
361
362
363
364
      Bp[dst]++;
    }
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= M; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{csr.num_cols, csr.num_rows, ret_indptr, ret_indices, ret_data};
}

365
366
template CSRMatrix CSRTranspose<kDLCPU, int32_t>(CSRMatrix csr);
template CSRMatrix CSRTranspose<kDLCPU, int64_t>(CSRMatrix csr);
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

///////////////////////////// CSRToCOO /////////////////////////////
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr) {
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  for (IdType i = 0; i < csr.indptr->shape[0] - 1; ++i) {
    std::fill(ret_row_data + indptr_data[i],
              ret_row_data + indptr_data[i + 1],
              i);
  }
  return COOMatrix{csr.num_rows, csr.num_cols, ret_row, csr.indices, csr.data};
}

template COOMatrix CSRToCOO<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOO<kDLCPU, int64_t>(CSRMatrix csr);

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  // data array should have the same type as the indices arrays
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
395
  const IdType* data = CSRHasData(csr) ? static_cast<IdType*>(csr.data->data) : nullptr;
396
397
398
399
400
401
402
403
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_col = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  IdType* ret_col_data = static_cast<IdType*>(ret_col->data);
  // scatter using the indices in the data array
  for (IdType row = 0; row < N; ++row) {
    for (IdType j = indptr_data[row]; j < indptr_data[row + 1]; ++j) {
      const IdType col = indices_data[j];
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
404
405
      ret_row_data[data ? data[j] : j] = row;
      ret_col_data[data ? data[j] : j] = col;
406
407
    }
  }
408
  return COOMatrix(N, M, ret_row, ret_col);
409
410
411
412
413
414
415
}

template COOMatrix CSRToCOODataAsOrder<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOODataAsOrder<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRSliceRows /////////////////////////////

416
template <DLDeviceType XPU, typename IdType>
417
418
419
420
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const int64_t num_rows = end - start;
  const int64_t nnz = indptr[end] - indptr[start];
421
422
  IdArray ret_indptr = IdArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indices->ctx);
  IdType* r_indptr = static_cast<IdType*>(ret_indptr->data);
423
424
425
426
  for (int64_t i = start; i < end + 1; ++i) {
    r_indptr[i - start] = indptr[i] - indptr[start];
  }
  // indices and data can be view arrays
427
428
429
430
431
432
433
434
435
436
437
  IdArray ret_indices = csr.indices.CreateView(
      {nnz}, csr.indices->dtype, indptr[start] * sizeof(IdType));
  IdArray ret_data;
  if (CSRHasData(csr))
    ret_data = csr.data.CreateView({nnz}, csr.data->dtype, indptr[start] * sizeof(IdType));
  else
    ret_data = aten::Range(indptr[start], indptr[end],
                           csr.indptr->dtype.bits, csr.indptr->ctx);
  return CSRMatrix(num_rows, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
438
439
}

440
441
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);
442

443
template <DLDeviceType XPU, typename IdType>
444
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
445
  CHECK_SAME_DTYPE(csr.indices, rows);
446
447
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
448
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
449
450
451
452
453
454
455
456
457
458
459
460
461
  const auto len = rows->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
  int64_t nnz = 0;
  for (int64_t i = 0; i < len; ++i) {
    IdType vid = rows_data[i];
    nnz += impl::CSRGetRowNNZ<XPU, IdType>(csr, vid);
  }

  CSRMatrix ret;
  ret.num_rows = len;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({len + 1}, csr.indptr->dtype, csr.indices->ctx);
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
462
463
  ret.data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  ret.sorted = csr.sorted;
464
465
466

  IdType* ret_indptr_data = static_cast<IdType*>(ret.indptr->data);
  IdType* ret_indices_data = static_cast<IdType*>(ret.indices->data);
467
  IdType* ret_data = static_cast<IdType*>(ret.data->data);
468
469
470
471
472
473
474
  ret_indptr_data[0] = 0;
  for (int64_t i = 0; i < len; ++i) {
    const IdType rid = rows_data[i];
    // note: zero is allowed
    ret_indptr_data[i + 1] = ret_indptr_data[i] + indptr_data[rid + 1] - indptr_data[rid];
    std::copy(indices_data + indptr_data[rid], indices_data + indptr_data[rid + 1],
              ret_indices_data + ret_indptr_data[i]);
475
476
477
478
479
480
    if (data)
      std::copy(data + indptr_data[rid], data + indptr_data[rid + 1],
                ret_data + ret_indptr_data[i]);
    else
      std::iota(ret_data + ret_indptr_data[i], ret_data + ret_indptr_data[i + 1],
                indptr_data[rid]);
481
482
483
484
  }
  return ret;
}

485
486
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix , NDArray);
487
488
489

///////////////////////////// CSRSliceMatrix /////////////////////////////

490
template <DLDeviceType XPU, typename IdType>
491
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
492
493
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
494
495
496
497
  IdHashMap<IdType> hashmap(cols);
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
498
  const bool has_data = CSRHasData(csr);
499
500
501

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
502
  const IdType* data = has_data? static_cast<IdType*>(csr.data->data) : nullptr;
503
504

  std::vector<IdType> sub_indptr, sub_indices;
505
  std::vector<IdType> sub_data;
506
507
508
509
510
511
512
513
514
515
516
517
  sub_indptr.resize(new_nrows + 1, 0);
  const IdType kInvalidId = new_ncols + 1;
  for (int64_t i = 0; i < new_nrows; ++i) {
    // NOTE: newi == i
    const IdType oldi = rows_data[i];
    CHECK(oldi >= 0 && oldi < csr.num_rows) << "Invalid row index: " << oldi;
    for (IdType p = indptr_data[oldi]; p < indptr_data[oldi + 1]; ++p) {
      const IdType oldj = indices_data[p];
      const IdType newj = hashmap.Map(oldj, kInvalidId);
      if (newj != kInvalidId) {
        ++sub_indptr[i];
        sub_indices.push_back(newj);
518
        sub_data.push_back(has_data? data[p] : p);
519
520
521
522
523
524
525
526
527
528
529
530
531
      }
    }
  }

  // cumsum sub_indptr
  for (int64_t i = 0, cumsum = 0; i < new_nrows; ++i) {
    const IdType temp = sub_indptr[i];
    sub_indptr[i] = cumsum;
    cumsum += temp;
  }
  sub_indptr[new_nrows] = sub_indices.size();

  const int64_t nnz = sub_data.size();
532
533
  NDArray sub_data_arr = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  IdType* ptr = static_cast<IdType*>(sub_data_arr->data);
534
535
  std::copy(sub_data.begin(), sub_data.end(), ptr);
  return CSRMatrix{new_nrows, new_ncols,
536
537
    NDArray::FromVector(sub_indptr, csr.indptr->ctx),
    NDArray::FromVector(sub_indices, csr.indptr->ctx),
538
539
540
    sub_data_arr};
}

541
template CSRMatrix CSRSliceMatrix<kDLCPU, int32_t>(
542
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
543
template CSRMatrix CSRSliceMatrix<kDLCPU, int64_t>(
544
545
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
546
547
///////////////////////////// CSRSort /////////////////////////////

548
549
550
551
552
553
554
555
556
557
558
template <DLDeviceType XPU, typename IdType>
void CSRSort_(CSRMatrix* csr) {
  typedef std::pair<IdType, IdType> ShufflePair;
  const int64_t num_rows = csr->num_rows;
  const int64_t nnz = csr->indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr->indptr->data);
  IdType* indices_data = static_cast<IdType*>(csr->indices->data);
  if (!CSRHasData(*csr)) {
    csr->data = aten::Range(0, nnz, csr->indptr->dtype.bits, csr->indptr->ctx);
  }
  IdType* eid_data = static_cast<IdType*>(csr->data->data);
Da Zheng's avatar
Da Zheng committed
559
560
#pragma omp parallel
  {
561
    std::vector<ShufflePair> reorder_vec;
Da Zheng's avatar
Da Zheng committed
562
563
#pragma omp for
    for (int64_t row = 0; row < num_rows; row++) {
564
      const int64_t num_cols = indptr_data[row + 1] - indptr_data[row];
Da Zheng's avatar
Da Zheng committed
565
      IdType *col = indices_data + indptr_data[row];
566
      IdType *eid = eid_data + indptr_data[row];
Da Zheng's avatar
Da Zheng committed
567
568
569
570
571
572
573

      reorder_vec.resize(num_cols);
      for (int64_t i = 0; i < num_cols; i++) {
        reorder_vec[i].first = col[i];
        reorder_vec[i].second = eid[i];
      }
      std::sort(reorder_vec.begin(), reorder_vec.end(),
574
                [](const ShufflePair &e1, const ShufflePair &e2) {
Da Zheng's avatar
Da Zheng committed
575
576
577
578
579
580
581
582
                  return e1.first < e2.first;
                });
      for (int64_t i = 0; i < num_cols; i++) {
        col[i] = reorder_vec[i].first;
        eid[i] = reorder_vec[i].second;
      }
    }
  }
583
  csr->sorted = true;
Da Zheng's avatar
Da Zheng committed
584
585
}

586
587
template void CSRSort_<kDLCPU, int64_t>(CSRMatrix* csr);
template void CSRSort_<kDLCPU, int32_t>(CSRMatrix* csr);
Da Zheng's avatar
Da Zheng committed
588

Da Zheng's avatar
Da Zheng committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
///////////////////////////// CSRReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(csr.indices, new_row_id_arr);
  CHECK_SAME_DTYPE(csr.indices, new_col_id_arr);

  // Input CSR
  const IdType* in_indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* in_indices = static_cast<IdType*>(csr.indices->data);
  const IdType* in_data = static_cast<IdType*>(csr.data->data);
  int64_t num_rows = csr.num_rows;
  int64_t num_cols = csr.num_cols;
  int64_t nnz = csr.indices->shape[0];
  CHECK_EQ(nnz, in_indptr[num_rows]);
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of CSR";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of CSR";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output CSR
  NDArray out_indptr_arr = NDArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray out_indices_arr = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray out_data_arr = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType *out_indptr = static_cast<IdType*>(out_indptr_arr->data);
  IdType *out_indices = static_cast<IdType*>(out_indices_arr->data);
  IdType *out_data = static_cast<IdType*>(out_data_arr->data);

  // Compute the length of rows for the new matrix.
  std::vector<IdType> new_row_lens(num_rows, -1);
#pragma omp parallel for
  for (int64_t i = 0; i < num_rows; i++) {
    int64_t new_row_id = new_row_ids[i];
    new_row_lens[new_row_id] = in_indptr[i + 1] - in_indptr[i];
  }
  // Compute the starting location of each row in the new matrix.
  out_indptr[0] = 0;
  // This is sequential. It should be pretty fast.
  for (int64_t i = 0; i < num_rows; i++) {
    CHECK_GE(new_row_lens[i], 0);
    out_indptr[i + 1] = out_indptr[i] + new_row_lens[i];
  }
  CHECK_EQ(out_indptr[num_rows], nnz);
  // Copy indieces and data with the new order.
  // Here I iterate rows in the order of the old matrix.
#pragma omp parallel for
  for (int64_t i = 0; i < num_rows; i++) {
    const IdType *in_row = in_indices + in_indptr[i];
    const IdType *in_row_data = in_data + in_indptr[i];

    int64_t new_row_id = new_row_ids[i];
    IdType *out_row = out_indices + out_indptr[new_row_id];
    IdType *out_row_data = out_data + out_indptr[new_row_id];

    int64_t row_len = new_row_lens[new_row_id];
    // Here I iterate col indices in a row in the order of the old matrix.
    for (int64_t j = 0; j < row_len; j++) {
      out_row[j] = new_col_ids[in_row[j]];
      out_row_data[j] = in_row_data[j];
    }
    // TODO(zhengda) maybe we should sort the column indices.
  }
  return CSRMatrix(num_rows, num_cols,
    out_indptr_arr, out_indices_arr, out_data_arr);
}

template CSRMatrix CSRReorder<kDLCPU, int64_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template CSRMatrix CSRReorder<kDLCPU, int32_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

665
666
667
}  // namespace impl
}  // namespace aten
}  // namespace dgl