spmat_op_impl.cc 24.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief Sparse matrix operator CPU implementation
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {
namespace {
/*!
 * \brief A hashmap that maps each ids in the given array to new ids starting from zero.
 */
template <typename IdType>
class IdHashMap {
 public:
  // Construct the hashmap using the given id arrays.
  // The id array could contain duplicates.
  explicit IdHashMap(IdArray ids): filter_(kFilterSize, false) {
    const IdType* ids_data = static_cast<IdType*>(ids->data);
    const int64_t len = ids->shape[0];
    IdType newid = 0;
    for (int64_t i = 0; i < len; ++i) {
      const IdType id = ids_data[i];
      if (!Contains(id)) {
        oldv2newv_[id] = newid++;
        filter_[id & kFilterMask] = true;
      }
    }
  }

  // Return true if the given id is contained in this hashmap.
  bool Contains(IdType id) const {
    return filter_[id & kFilterMask] && oldv2newv_.count(id);
  }

  // Return the new id of the given id. If the given id is not contained
  // in the hash map, returns the default_val instead.
  IdType Map(IdType id, IdType default_val) const {
    if (filter_[id & kFilterMask]) {
      auto it = oldv2newv_.find(id);
      return (it == oldv2newv_.end()) ? default_val : it->second;
    } else {
      return default_val;
    }
  }

 private:
  static constexpr int32_t kFilterMask = 0xFFFFFF;
  static constexpr int32_t kFilterSize = kFilterMask + 1;
  // This bitmap is used as a bloom filter to remove some lookups.
  // Hashtable is very slow. Using bloom filter can significantly speed up lookups.
  std::vector<bool> filter_;
  // The hashmap from old vid to new vid
  std::unordered_map<IdType, IdType> oldv2newv_;
};

struct PairHash {
  template <class T1, class T2>
  std::size_t operator() (const std::pair<T1, T2>& pair) const {
    return std::hash<T1>()(pair.first) ^ std::hash<T2>()(pair.second);
  }
};

template <typename DType>
inline runtime::NDArray VecToNDArray(const std::vector<DType>& vec,
    DLDataType dtype, DLContext ctx) {
  const int64_t len = vec.size();
  NDArray ret_arr = NDArray::Empty({len}, dtype, ctx);
  DType* ptr = static_cast<DType*>(ret_arr->data);
  std::copy(vec.begin(), vec.end(), ptr);
  return ret_arr;
}

inline bool CSRHasData(CSRMatrix csr) {
  return csr.data.defined();
}

inline bool COOHasData(COOMatrix csr) {
  return csr.data.defined();
}
}  // namespace

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType i = indptr_data[row]; i < indptr_data[row + 1]; ++i) {
    if (indices_data[i] == col) {
      return true;
    }
  }
  return false;
}

template bool CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    *(rst_data++) = CSRIsNonZero<XPU, IdType>(csr, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, NDArray, NDArray);

///////////////////////////// CSRHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType src = 0; src < csr.num_rows; ++src) {
    std::unordered_set<IdType> hashmap;
    for (IdType eid = indptr_data[src]; eid < indptr_data[src+1]; ++eid) {
      const IdType dst = indices_data[eid];
      if (hashmap.count(dst)) {
        return true;
      } else {
        hashmap.insert(dst);
      }
    }
  }
  return false;
}

template bool CSRHasDuplicate<kDLCPU, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  return indptr_data[row + 1] - indptr_data[row];
}

template int64_t CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  for (int64_t i = 0; i < len; ++i) {
    const auto vid = vid_data[i];
    rst_data[i] = indptr_data[vid + 1] - indptr_data[vid];
  }
  return rst;
}

template NDArray CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, NDArray);

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

template NDArray CSRGetRowColumnIndices<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLCPU, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetRowData /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  CHECK(CSRHasData(csr)) << "missing data array";
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(DType);
  return csr.data.CreateView({len}, csr.data->dtype, offset);
}

template NDArray CSRGetRowData<kDLCPU, int32_t, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLCPU, int64_t, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetData /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
NDArray CSRGetData(CSRMatrix csr, int64_t row, int64_t col) {
  CHECK(CSRHasData(csr)) << "missing data array";
  // TODO(minjie): use more efficient binary search when the column indices is sorted
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
  std::vector<DType> ret_vec;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);
  for (IdType i = indptr_data[row]; i < indptr_data[row+1]; ++i) {
    if (indices_data[i] == col) {
      ret_vec.push_back(data[i]);
    }
  }
  return VecToNDArray(ret_vec, csr.data->dtype, csr.data->ctx);
}

template NDArray CSRGetData<kDLCPU, int32_t, int32_t>(CSRMatrix, int64_t, int64_t);
template NDArray CSRGetData<kDLCPU, int64_t, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType, typename DType>
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  CHECK(CSRHasData(csr)) << "missing data array";
  // TODO(minjie): more efficient implementation for sorted column index
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);

  std::vector<DType> ret_vec;

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
    for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
      if (indices_data[i] == col_id) {
          ret_vec.push_back(data[i]);
      }
    }
  }

  return VecToNDArray(ret_vec, csr.data->dtype, csr.data->ctx);
}

template NDArray CSRGetData<kDLCPU, int32_t, int32_t>(CSRMatrix csr, NDArray rows, NDArray cols);
template NDArray CSRGetData<kDLCPU, int64_t, int64_t>(CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRGetDataAndIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray rows, NDArray cols) {
  CHECK(CSRHasData(csr)) << "missing data array";
  // TODO(minjie): more efficient implementation for matrix without duplicate entries
  // TODO(minjie): more efficient implementation for sorted column index
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);

  std::vector<IdType> ret_rows, ret_cols;
  std::vector<DType> ret_data;

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
    for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
      if (indices_data[i] == col_id) {
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
          ret_data.push_back(data[i]);
      }
    }
  }

  return {VecToIdArray(ret_rows, csr.indptr->dtype.bits, csr.indptr->ctx),
          VecToIdArray(ret_cols, csr.indptr->dtype.bits, csr.indptr->ctx),
          VecToNDArray(ret_data, csr.data->dtype, csr.data->ctx)};
}

template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int32_t, int32_t>(
    CSRMatrix csr, NDArray rows, NDArray cols);
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int64_t, int64_t>(
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRTranspose /////////////////////////////

// for a matrix of shape (N, M) and NNZ
// complexity: time O(NNZ + max(N, M)), space O(1)
template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRTranspose(CSRMatrix csr) {
  CHECK(CSRHasData(csr)) << "missing data array is currently not allowed in CSRTranspose.";
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* Ap = static_cast<IdType*>(csr.indptr->data);
  const IdType* Aj = static_cast<IdType*>(csr.indices->data);
  const DType* Ax = static_cast<DType*>(csr.data->data);
  NDArray ret_indptr = NDArray::Empty({M + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray ret_indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_data = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);
  DType* Bx = static_cast<DType*>(ret_data->data);

  std::fill(Bp, Bp + M, 0);

  for (int64_t j = 0; j < nnz; ++j) {
    Bp[Aj[j]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < M; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[M] = nnz;

  for (int64_t i = 0; i < N; ++i) {
    for (IdType j = Ap[i]; j < Ap[i+1]; ++j) {
      const IdType dst = Aj[j];
      Bi[Bp[dst]] = i;
      Bx[Bp[dst]] = Ax[j];
      Bp[dst]++;
    }
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= M; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{csr.num_cols, csr.num_rows, ret_indptr, ret_indices, ret_data};
}

template CSRMatrix CSRTranspose<kDLCPU, int32_t, int32_t>(CSRMatrix csr);
template CSRMatrix CSRTranspose<kDLCPU, int64_t, int64_t>(CSRMatrix csr);

///////////////////////////// CSRToCOO /////////////////////////////
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr) {
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  for (IdType i = 0; i < csr.indptr->shape[0] - 1; ++i) {
    std::fill(ret_row_data + indptr_data[i],
              ret_row_data + indptr_data[i + 1],
              i);
  }
  return COOMatrix{csr.num_rows, csr.num_cols, ret_row, csr.indices, csr.data};
}

template COOMatrix CSRToCOO<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOO<kDLCPU, int64_t>(CSRMatrix csr);

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  // data array should have the same type as the indices arrays
  const IdType* data = static_cast<IdType*>(csr.data->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_col = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  IdType* ret_col_data = static_cast<IdType*>(ret_col->data);
  // scatter using the indices in the data array
  for (IdType row = 0; row < N; ++row) {
    for (IdType j = indptr_data[row]; j < indptr_data[row + 1]; ++j) {
      const IdType col = indices_data[j];
      ret_row_data[data[j]] = row;
      ret_col_data[data[j]] = col;
    }
  }
  COOMatrix coo;
  coo.num_rows = N;
  coo.num_cols = M;
  coo.row = ret_row;
  coo.col = ret_col;
  // no data array
  return coo;
}

template COOMatrix CSRToCOODataAsOrder<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOODataAsOrder<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRSliceRows /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const int64_t num_rows = end - start;
  const int64_t nnz = indptr[end] - indptr[start];
  CSRMatrix ret;
  ret.num_rows = num_rows;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indices->ctx);
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  ret.data = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType* r_indptr = static_cast<IdType*>(ret.indptr->data);
  for (int64_t i = start; i < end + 1; ++i) {
    r_indptr[i - start] = indptr[i] - indptr[start];
  }
  // indices and data can be view arrays
  ret.indices = csr.indices.CreateView({nnz}, csr.indices->dtype, indptr[start] * sizeof(IdType));
  ret.data = csr.data.CreateView({nnz}, csr.data->dtype, indptr[start] * sizeof(DType));
  return ret;
}

template CSRMatrix CSRSliceRows<kDLCPU, int32_t, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);
  const auto len = rows->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
  int64_t nnz = 0;
  for (int64_t i = 0; i < len; ++i) {
    IdType vid = rows_data[i];
    nnz += impl::CSRGetRowNNZ<XPU, IdType>(csr, vid);
  }

  CSRMatrix ret;
  ret.num_rows = len;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({len + 1}, csr.indptr->dtype, csr.indices->ctx);
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  ret.data = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);

  IdType* ret_indptr_data = static_cast<IdType*>(ret.indptr->data);
  IdType* ret_indices_data = static_cast<IdType*>(ret.indices->data);
  DType* ret_data = static_cast<DType*>(ret.data->data);
  ret_indptr_data[0] = 0;
  for (int64_t i = 0; i < len; ++i) {
    const IdType rid = rows_data[i];
    // note: zero is allowed
    ret_indptr_data[i + 1] = ret_indptr_data[i] + indptr_data[rid + 1] - indptr_data[rid];
    std::copy(indices_data + indptr_data[rid], indices_data + indptr_data[rid + 1],
              ret_indices_data + ret_indptr_data[i]);
    std::copy(data + indptr_data[rid], data + indptr_data[rid + 1],
              ret_data + ret_indptr_data[i]);
  }
  return ret;
}

template CSRMatrix CSRSliceRows<kDLCPU, int32_t, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t, int64_t>(CSRMatrix , NDArray);

///////////////////////////// CSRSliceMatrix /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  IdHashMap<IdType> hashmap(cols);
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);

  std::vector<IdType> sub_indptr, sub_indices;
  std::vector<DType> sub_data;
  sub_indptr.resize(new_nrows + 1, 0);
  const IdType kInvalidId = new_ncols + 1;
  for (int64_t i = 0; i < new_nrows; ++i) {
    // NOTE: newi == i
    const IdType oldi = rows_data[i];
    CHECK(oldi >= 0 && oldi < csr.num_rows) << "Invalid row index: " << oldi;
    for (IdType p = indptr_data[oldi]; p < indptr_data[oldi + 1]; ++p) {
      const IdType oldj = indices_data[p];
      const IdType newj = hashmap.Map(oldj, kInvalidId);
      if (newj != kInvalidId) {
        ++sub_indptr[i];
        sub_indices.push_back(newj);
        sub_data.push_back(data[p]);
      }
    }
  }

  // cumsum sub_indptr
  for (int64_t i = 0, cumsum = 0; i < new_nrows; ++i) {
    const IdType temp = sub_indptr[i];
    sub_indptr[i] = cumsum;
    cumsum += temp;
  }
  sub_indptr[new_nrows] = sub_indices.size();

  const int64_t nnz = sub_data.size();
  NDArray sub_data_arr = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  DType* ptr = static_cast<DType*>(sub_data_arr->data);
  std::copy(sub_data.begin(), sub_data.end(), ptr);
  return CSRMatrix{new_nrows, new_ncols,
    VecToIdArray(sub_indptr, csr.indptr->dtype.bits, csr.indptr->ctx),
    VecToIdArray(sub_indices, csr.indptr->dtype.bits, csr.indptr->ctx),
    sub_data_arr};
}

template CSRMatrix CSRSliceMatrix<kDLCPU, int32_t, int32_t>(
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
template CSRMatrix CSRSliceMatrix<kDLCPU, int64_t, int64_t>(
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

///////////////////////////// COOHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool COOHasDuplicate(COOMatrix coo) {
  std::unordered_set<std::pair<IdType, IdType>, PairHash> hashmap;
  const IdType* src_data = static_cast<IdType*>(coo.row->data);
  const IdType* dst_data = static_cast<IdType*>(coo.col->data);
  const auto nnz = coo.row->shape[0];
  for (IdType eid = 0; eid < nnz; ++eid) {
    const auto& p = std::make_pair(src_data[eid], dst_data[eid]);
    if (hashmap.count(p)) {
      return true;
    } else {
      hashmap.insert(p);
    }
  }
  return false;
}

template bool COOHasDuplicate<kDLCPU, int32_t>(COOMatrix coo);
template bool COOHasDuplicate<kDLCPU, int64_t>(COOMatrix coo);

///////////////////////////// COOToCSR /////////////////////////////

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix COOToCSR(COOMatrix coo) {
  const int64_t N = coo.num_rows;
  const int64_t NNZ = coo.row->shape[0];
  const IdType* row_data = static_cast<IdType*>(coo.row->data);
  const IdType* col_data = static_cast<IdType*>(coo.col->data);
  NDArray ret_indptr = NDArray::Empty({N + 1}, coo.row->dtype, coo.row->ctx);
  NDArray ret_indices = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
  NDArray ret_data;
  if (COOHasData(coo)) {
    ret_data = NDArray::Empty({NNZ}, coo.data->dtype, coo.data->ctx);
  } else {
    // if no data array in the input coo, the return data array is a shuffle index.
    ret_data = NDArray::Empty({NNZ}, coo.row->dtype, coo.row->ctx);
  }

  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);

  std::fill(Bp, Bp + N, 0);

  for (int64_t i = 0; i < NNZ; ++i) {
    Bp[row_data[i]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < N; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[N] = NNZ;

  for (int64_t i = 0; i < NNZ; ++i) {
    const IdType r = row_data[i];
    Bi[Bp[r]] = col_data[i];
    if (COOHasData(coo)) {
      const DType* data = static_cast<DType*>(coo.data->data);
      DType* Bx = static_cast<DType*>(ret_data->data);
      Bx[Bp[r]] = data[i];
    } else {
      IdType* Bx = static_cast<IdType*>(ret_data->data);
      Bx[Bp[r]] = i;
    }
    Bp[r]++;
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= N; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{coo.num_rows, coo.num_cols, ret_indptr, ret_indices, ret_data};
}

template CSRMatrix COOToCSR<kDLCPU, int32_t, int32_t>(COOMatrix coo);
template CSRMatrix COOToCSR<kDLCPU, int64_t, int64_t>(COOMatrix coo);

}  // namespace impl
}  // namespace aten
}  // namespace dgl