spmat_op_impl.cc 23.6 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief Sparse matrix operator CPU implementation
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>
9
#include "array_utils.h"
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
Da Zheng's avatar
Da Zheng committed
26
27
28
29
30
31
32
33
34
  if (csr.sorted) {
    const IdType *start = indices_data + indptr_data[row];
    const IdType *end = indices_data + indptr_data[row + 1];
    return std::binary_search(start, end, col);
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row + 1]; ++i) {
      if (indices_data[i] == col) {
        return true;
      }
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    }
  }
  return false;
}

template bool CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    *(rst_data++) = CSRIsNonZero<XPU, IdType>(csr, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, NDArray, NDArray);

///////////////////////////// CSRHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType src = 0; src < csr.num_rows; ++src) {
    std::unordered_set<IdType> hashmap;
    for (IdType eid = indptr_data[src]; eid < indptr_data[src+1]; ++eid) {
      const IdType dst = indices_data[eid];
      if (hashmap.count(dst)) {
        return true;
      } else {
        hashmap.insert(dst);
      }
    }
  }
  return false;
}

template bool CSRHasDuplicate<kDLCPU, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  return indptr_data[row + 1] - indptr_data[row];
}

template int64_t CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  for (int64_t i = 0; i < len; ++i) {
    const auto vid = vid_data[i];
    rst_data[i] = indptr_data[vid + 1] - indptr_data[vid];
  }
  return rst;
}

template NDArray CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, NDArray);

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

template NDArray CSRGetRowColumnIndices<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLCPU, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetRowData /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  CHECK(CSRHasData(csr)) << "missing data array";
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(DType);
  return csr.data.CreateView({len}, csr.data->dtype, offset);
}

template NDArray CSRGetRowData<kDLCPU, int32_t, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLCPU, int64_t, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetData /////////////////////////////

Da Zheng's avatar
Da Zheng committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
template <DLDeviceType XPU, typename IdType, typename DType>
void CollectDataFromSorted(const IdType *indices_data, const DType *data,
                           const IdType start, const IdType end, const IdType col,
                           std::vector<DType> *ret_vec) {
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
      ret_vec->push_back(data[idx]);
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

167
168
169
170
171
172
173
174
175
176
template <DLDeviceType XPU, typename IdType, typename DType>
NDArray CSRGetData(CSRMatrix csr, int64_t row, int64_t col) {
  CHECK(CSRHasData(csr)) << "missing data array";
  // TODO(minjie): use more efficient binary search when the column indices is sorted
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
  std::vector<DType> ret_vec;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);
Da Zheng's avatar
Da Zheng committed
177
178
179
180
181
182
183
184
185
  if (csr.sorted) {
    CollectDataFromSorted<XPU, IdType, DType>(indices_data, data,
                                              indptr_data[row], indptr_data[row + 1],
                                              col, &ret_vec);
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row+1]; ++i) {
      if (indices_data[i] == col) {
        ret_vec.push_back(data[i]);
      }
186
187
    }
  }
188
  return NDArray::FromVector(ret_vec, csr.data->dtype, csr.data->ctx);
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
}

template NDArray CSRGetData<kDLCPU, int32_t, int32_t>(CSRMatrix, int64_t, int64_t);
template NDArray CSRGetData<kDLCPU, int64_t, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType, typename DType>
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  CHECK(CSRHasData(csr)) << "missing data array";
  // TODO(minjie): more efficient implementation for sorted column index
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);

  std::vector<DType> ret_vec;

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
219
220
221
222
223
224
225
    if (csr.sorted) {
      CollectDataFromSorted<XPU, IdType, DType>(indices_data, data,
                                                indptr_data[row_id], indptr_data[row_id + 1],
                                                col_id, &ret_vec);
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
226
          ret_vec.push_back(data[i]);
Da Zheng's avatar
Da Zheng committed
227
        }
228
229
230
231
      }
    }
  }

232
  return NDArray::FromVector(ret_vec, csr.data->dtype, csr.data->ctx);
233
234
235
236
237
238
239
}

template NDArray CSRGetData<kDLCPU, int32_t, int32_t>(CSRMatrix csr, NDArray rows, NDArray cols);
template NDArray CSRGetData<kDLCPU, int64_t, int64_t>(CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRGetDataAndIndices /////////////////////////////

Da Zheng's avatar
Da Zheng committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
template <DLDeviceType XPU, typename IdType, typename DType>
void CollectDataIndicesFromSorted(const IdType *indices_data, const DType *data,
                                  const IdType start, const IdType end, const IdType col,
                                  std::vector<IdType> *col_vec,
                                  std::vector<DType> *ret_vec) {
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
      col_vec->push_back(indices_data[idx]);
      ret_vec->push_back(data[idx]);
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
template <DLDeviceType XPU, typename IdType, typename DType>
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray rows, NDArray cols) {
  CHECK(CSRHasData(csr)) << "missing data array";
  // TODO(minjie): more efficient implementation for matrix without duplicate entries
  // TODO(minjie): more efficient implementation for sorted column index
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);

  std::vector<IdType> ret_rows, ret_cols;
  std::vector<DType> ret_data;

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    if (csr.sorted) {
      // Here we collect col indices and data.
      CollectDataIndicesFromSorted<XPU, IdType, DType>(indices_data, data,
                                                       indptr_data[row_id],
                                                       indptr_data[row_id + 1],
                                                       col_id, &ret_cols,
                                                       &ret_data);
      // We need to add row Ids.
      while (ret_rows.size() < ret_data.size()) {
        ret_rows.push_back(row_id);
      }
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
304
305
306
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
          ret_data.push_back(data[i]);
Da Zheng's avatar
Da Zheng committed
307
        }
308
309
310
311
      }
    }
  }

312
313
314
  return {NDArray::FromVector(ret_rows, csr.indptr->dtype, csr.indptr->ctx),
          NDArray::FromVector(ret_cols, csr.indptr->dtype, csr.indptr->ctx),
          NDArray::FromVector(ret_data, csr.data->dtype, csr.data->ctx)};
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
}

template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int32_t, int32_t>(
    CSRMatrix csr, NDArray rows, NDArray cols);
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int64_t, int64_t>(
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRTranspose /////////////////////////////

// for a matrix of shape (N, M) and NNZ
// complexity: time O(NNZ + max(N, M)), space O(1)
template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRTranspose(CSRMatrix csr) {
  CHECK(CSRHasData(csr)) << "missing data array is currently not allowed in CSRTranspose.";
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* Ap = static_cast<IdType*>(csr.indptr->data);
  const IdType* Aj = static_cast<IdType*>(csr.indices->data);
  const DType* Ax = static_cast<DType*>(csr.data->data);
  NDArray ret_indptr = NDArray::Empty({M + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray ret_indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_data = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);
  DType* Bx = static_cast<DType*>(ret_data->data);

  std::fill(Bp, Bp + M, 0);

  for (int64_t j = 0; j < nnz; ++j) {
    Bp[Aj[j]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < M; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[M] = nnz;

  for (int64_t i = 0; i < N; ++i) {
    for (IdType j = Ap[i]; j < Ap[i+1]; ++j) {
      const IdType dst = Aj[j];
      Bi[Bp[dst]] = i;
      Bx[Bp[dst]] = Ax[j];
      Bp[dst]++;
    }
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= M; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{csr.num_cols, csr.num_rows, ret_indptr, ret_indices, ret_data};
}

template CSRMatrix CSRTranspose<kDLCPU, int32_t, int32_t>(CSRMatrix csr);
template CSRMatrix CSRTranspose<kDLCPU, int64_t, int64_t>(CSRMatrix csr);

///////////////////////////// CSRToCOO /////////////////////////////
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr) {
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  for (IdType i = 0; i < csr.indptr->shape[0] - 1; ++i) {
    std::fill(ret_row_data + indptr_data[i],
              ret_row_data + indptr_data[i + 1],
              i);
  }
  return COOMatrix{csr.num_rows, csr.num_cols, ret_row, csr.indices, csr.data};
}

template COOMatrix CSRToCOO<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOO<kDLCPU, int64_t>(CSRMatrix csr);

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  // data array should have the same type as the indices arrays
  const IdType* data = static_cast<IdType*>(csr.data->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_col = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  IdType* ret_col_data = static_cast<IdType*>(ret_col->data);
  // scatter using the indices in the data array
  for (IdType row = 0; row < N; ++row) {
    for (IdType j = indptr_data[row]; j < indptr_data[row + 1]; ++j) {
      const IdType col = indices_data[j];
      ret_row_data[data[j]] = row;
      ret_col_data[data[j]] = col;
    }
  }
  COOMatrix coo;
  coo.num_rows = N;
  coo.num_cols = M;
  coo.row = ret_row;
  coo.col = ret_col;
  // no data array
  return coo;
}

template COOMatrix CSRToCOODataAsOrder<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOODataAsOrder<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRSliceRows /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const int64_t num_rows = end - start;
  const int64_t nnz = indptr[end] - indptr[start];
  CSRMatrix ret;
  ret.num_rows = num_rows;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indices->ctx);
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  ret.data = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType* r_indptr = static_cast<IdType*>(ret.indptr->data);
  for (int64_t i = start; i < end + 1; ++i) {
    r_indptr[i - start] = indptr[i] - indptr[start];
  }
  // indices and data can be view arrays
  ret.indices = csr.indices.CreateView({nnz}, csr.indices->dtype, indptr[start] * sizeof(IdType));
  ret.data = csr.data.CreateView({nnz}, csr.data->dtype, indptr[start] * sizeof(DType));
  return ret;
}

template CSRMatrix CSRSliceRows<kDLCPU, int32_t, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);
  const auto len = rows->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
  int64_t nnz = 0;
  for (int64_t i = 0; i < len; ++i) {
    IdType vid = rows_data[i];
    nnz += impl::CSRGetRowNNZ<XPU, IdType>(csr, vid);
  }

  CSRMatrix ret;
  ret.num_rows = len;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({len + 1}, csr.indptr->dtype, csr.indices->ctx);
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  ret.data = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);

  IdType* ret_indptr_data = static_cast<IdType*>(ret.indptr->data);
  IdType* ret_indices_data = static_cast<IdType*>(ret.indices->data);
  DType* ret_data = static_cast<DType*>(ret.data->data);
  ret_indptr_data[0] = 0;
  for (int64_t i = 0; i < len; ++i) {
    const IdType rid = rows_data[i];
    // note: zero is allowed
    ret_indptr_data[i + 1] = ret_indptr_data[i] + indptr_data[rid + 1] - indptr_data[rid];
    std::copy(indices_data + indptr_data[rid], indices_data + indptr_data[rid + 1],
              ret_indices_data + ret_indptr_data[i]);
    std::copy(data + indptr_data[rid], data + indptr_data[rid + 1],
              ret_data + ret_indptr_data[i]);
  }
  return ret;
}

template CSRMatrix CSRSliceRows<kDLCPU, int32_t, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t, int64_t>(CSRMatrix , NDArray);

///////////////////////////// CSRSliceMatrix /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename DType>
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
  CHECK(CSRHasData(csr)) << "missing data array.";
  IdHashMap<IdType> hashmap(cols);
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  const DType* data = static_cast<DType*>(csr.data->data);

  std::vector<IdType> sub_indptr, sub_indices;
  std::vector<DType> sub_data;
  sub_indptr.resize(new_nrows + 1, 0);
  const IdType kInvalidId = new_ncols + 1;
  for (int64_t i = 0; i < new_nrows; ++i) {
    // NOTE: newi == i
    const IdType oldi = rows_data[i];
    CHECK(oldi >= 0 && oldi < csr.num_rows) << "Invalid row index: " << oldi;
    for (IdType p = indptr_data[oldi]; p < indptr_data[oldi + 1]; ++p) {
      const IdType oldj = indices_data[p];
      const IdType newj = hashmap.Map(oldj, kInvalidId);
      if (newj != kInvalidId) {
        ++sub_indptr[i];
        sub_indices.push_back(newj);
        sub_data.push_back(data[p]);
      }
    }
  }

  // cumsum sub_indptr
  for (int64_t i = 0, cumsum = 0; i < new_nrows; ++i) {
    const IdType temp = sub_indptr[i];
    sub_indptr[i] = cumsum;
    cumsum += temp;
  }
  sub_indptr[new_nrows] = sub_indices.size();

  const int64_t nnz = sub_data.size();
  NDArray sub_data_arr = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  DType* ptr = static_cast<DType*>(sub_data_arr->data);
  std::copy(sub_data.begin(), sub_data.end(), ptr);
  return CSRMatrix{new_nrows, new_ncols,
544
545
    NDArray::FromVector(sub_indptr, csr.indptr->dtype, csr.indptr->ctx),
    NDArray::FromVector(sub_indices, csr.indptr->dtype, csr.indptr->ctx),
546
547
548
549
550
551
552
553
    sub_data_arr};
}

template CSRMatrix CSRSliceMatrix<kDLCPU, int32_t, int32_t>(
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
template CSRMatrix CSRSliceMatrix<kDLCPU, int64_t, int64_t>(
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
template <DLDeviceType XPU, typename IdType, typename DType>
void CSRSort(CSRMatrix csr) {
  typedef std::pair<IdType, DType> shuffle_ele;
  int64_t num_rows = csr.num_rows;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  DType* eid_data = static_cast<DType*>(csr.data->data);
#pragma omp parallel
  {
    std::vector<shuffle_ele> reorder_vec;
#pragma omp for
    for (int64_t row = 0; row < num_rows; row++) {
      int64_t num_cols = indptr_data[row + 1] - indptr_data[row];
      IdType *col = indices_data + indptr_data[row];
      DType *eid = eid_data + indptr_data[row];

      reorder_vec.resize(num_cols);
      for (int64_t i = 0; i < num_cols; i++) {
        reorder_vec[i].first = col[i];
        reorder_vec[i].second = eid[i];
      }
      std::sort(reorder_vec.begin(), reorder_vec.end(),
                [](const shuffle_ele &e1, const shuffle_ele &e2) {
                  return e1.first < e2.first;
                });
      for (int64_t i = 0; i < num_cols; i++) {
        col[i] = reorder_vec[i].first;
        eid[i] = reorder_vec[i].second;
      }
    }
  }
}

template void CSRSort<kDLCPU, int64_t, int64_t>(CSRMatrix csr);
template void CSRSort<kDLCPU, int32_t, int32_t>(CSRMatrix csr);

590
591
592
}  // namespace impl
}  // namespace aten
}  // namespace dgl