test_nn.py 18.7 KB
Newer Older
1
2
3
import tensorflow as tf
from tensorflow.keras import layers
import networkx as nx
4
import pytest
5
6
7
8
import dgl
import dgl.nn.tensorflow as nn
import dgl.function as fn
import backend as F
9
10
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph, \
    random_block
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from copy import deepcopy

import numpy as np
import scipy as sp

def _AXWb(A, X, W, b):
    X = tf.matmul(X, W)
    Y = tf.reshape(tf.matmul(A, tf.reshape(X, (X.shape[0], -1))), X.shape)
    return Y + b

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = tf.sparse.to_dense(tf.sparse.reorder(g.adjacency_matrix(ctx=ctx)))

26
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    # conv = conv
    print(conv)
    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
    # test#2: more-dim
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    # test rest_parameters
    # old_weight = deepcopy(conv.weight.data)
    # conv.reset_parameters()
    # new_weight = conv.weight.data
    # assert not F.allclose(old_weight, new_weight)

74
@pytest.mark.parametrize('g', get_cases(['path', 'bipartite', 'small', 'block'], exclude=['zero-degree']))
75
76
77
78
79
80
81
82
83
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5))
84
    h_dst = F.randn((ndst, 2))
85
    if weight:
86
        h_out = conv(g, h)
87
    else:
88
89
90
91
92
93
94
95
96
97
98
        h_out = conv(g, h, weight=ext_w)
    assert h_out.shape == (ndst, 2)

    if not isinstance(g, dgl.DGLGraph) and len(g.ntypes) == 2:
        # bipartite, should also accept pair of tensors
        if weight:
            h_out2 = conv(g, (h, h_dst))
        else:
            h_out2 = conv(g, (h, h_dst), weight=ext_w)
        assert h_out2.shape == (ndst, 2)
        assert F.array_equal(h_out, h_out2)
99
100
101
102
103
104
105
106
107
108
109
110
111
112

def test_simple_pool():
    ctx = F.ctx()
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sum_pool(g, h0)
113
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
114
    h1 = avg_pool(g, h0)
115
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
116
    h1 = max_pool(g, h0)
117
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
118
    h1 = sort_pool(g, h0)
119
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = sum_pool(bg, h0)
    truth = tf.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = avg_pool(bg, h0)
    truth = tf.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = max_pool(bg, h0)
    truth = tf.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = sort_pool(bg, h0)
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

def uniform_attention(g, shape):
    a = F.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / tf.cast(tf.reshape(g.in_degrees(g.edges()[1]), target_shape), tf.float32)

def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
    edata = F.ones((g.number_of_edges(), 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test higher dimension case
    edata = F.ones((g.number_of_edges(), 3, 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test both forward and backward with Tensorflow built-in softmax.
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)
    
    score = F.randn((900, 1))
    with tf.GradientTape() as tape:
        tape.watch(score)
        grad = F.randn((900, 1))
        y = tf.reshape(F.softmax(tf.reshape(score,(30, 30)), dim=0), (-1, 1))
        grads = tape.gradient(y, [score])
        grad_score = grads[0]

    with tf.GradientTape() as tape:
        tape.watch(score)
        y_dgl = nn.edge_softmax(g, score)
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
        # check forward
        assert F.allclose(y_dgl, y)
        grads = tape.gradient(y_dgl, [score])
    # checkout gradient
    assert F.allclose(grads[0], grad_score)
    print(grads[0][:10], grad_score[:10])
    
    # Test 2
    def generate_rand_graph(n):
      arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
      return dgl.DGLGraph(arr, readonly=True)
    
    g = generate_rand_graph(50)
    a1 = F.randn((g.number_of_edges(), 1))
    a2 = tf.identity(a1)
    with tf.GradientTape() as tape:
        tape.watch(a1)
        g.edata['s'] = a1
        g.group_apply_edges('dst', lambda edges: {'ss':F.softmax(edges.data['s'], 1)})
        loss = tf.reduce_sum(g.edata['ss'])
        a1_grad = tape.gradient(loss, [a1])[0]
    
    with tf.GradientTape() as tape:
        tape.watch(a2)
        builtin_sm = nn.edge_softmax(g, a2)
        loss = tf.reduce_sum(builtin_sm)
        a2_grad = tape.gradient(loss, [a2])[0]
    print(a1_grad - a2_grad)
    assert len(g.ndata) == 0
    assert len(g.edata) == 2
    assert F.allclose(a1_grad, a2_grad, rtol=1e-4, atol=1e-4) # Follow tolerance in unittest backend

def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_1 = nn.edge_softmax(g, score, eids)
        grads = tape.gradient(y_1, [score])
    grad_1 = grads[0]
    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_2 = nn.edge_softmax(subg, score)
        grads = tape.gradient(y_2, [score])
    grad_2 = grads[0]

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))

    gap = nn.GlobalAttentionPooling(layers.Dense(1), layers.Dense(10))
    print(gap)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gap(g, h0)
265
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = gap(bg, h0)
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2


def test_rgcn():
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
286
287
288
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
289
290
291
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r)
292
    h_new_low = rgc_basis_low(g, h, r)
293
    assert list(h_new.shape) == [100, O]
294
295
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
296
297

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
298
299
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
300
301
302
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r)
303
    h_new_low = rgc_bdd_low(g, h, r)
304
    assert list(h_new.shape) == [100, O]
305
306
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
307
308
309
310
311

    # with norm
    norm = tf.zeros((g.number_of_edges(), 1))

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
312
313
314
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
315
316
317
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r, norm)
318
    h_new_low = rgc_basis_low(g, h, r, norm)
319
    assert list(h_new.shape) == [100, O]
320
321
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
322
323

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
324
325
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
326
327
328
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r, norm)
329
    h_new_low = rgc_bdd_low(g, h, r, norm)
330
    assert list(h_new.shape) == [100, O]
331
332
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
333
334
335

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
336
337
338
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
339
340
341
    h = tf.constant(np.random.randint(0, I, (100,)))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r)
342
    h_new_low = rgc_basis_low(g, h, r)
343
    assert list(h_new.shape) == [100, O]
344
345
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
346
347
348
349
350
351

def test_gat_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gat = nn.GATConv(5, 2, 4)
    feat = F.randn((100, 5))
    h = gat(g, feat)
352
353
354
355
356
357
358
    assert h.shape == (100, 4, 2)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gat = nn.GATConv((5, 10), 2, 4)
    feat = (F.randn((100, 5)), F.randn((200, 10)))
    h = gat(g, feat)

359
360
361
362
363
364
365
366
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].numpy())
    block = dgl.to_block(g, seed_nodes)
    gat = nn.GATConv(5, 2, 4)
    feat = F.randn((block.number_of_src_nodes(), 5))
    h = gat(block, feat)
    assert h.shape == (block.number_of_dst_nodes(), 4, 2)

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
def test_sage_conv(aggre_type):
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
    feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 200
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
389

390
391
392
393
394
395
396
397
398
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].numpy())
    block = dgl.to_block(g, seed_nodes)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((block.number_of_src_nodes(), 5))
    h = sage(block, feat)
    assert h.shape[0] == block.number_of_dst_nodes()
    assert h.shape[-1] == 10

Mufei Li's avatar
Mufei Li committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    # Test the case for graphs without edges
    g = dgl.bipartite([], num_nodes=(5, 3))
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
def test_sgc_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

def test_appnp_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((100, 5))

    h = appnp(g, feat)
    assert h.shape[-1] == 5

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv(aggregator_type):
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
    feat = F.randn((100, 5))
    gin = gin
    h = gin(g, feat)
    assert h.shape == (100, 12)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = gin(g, feat)
    assert h.shape == (200, 12)
458

459
460
461
462
463
464
465
466
467
468
469
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].numpy())
    block = dgl.to_block(g, seed_nodes)
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
    feat = F.randn((block.number_of_src_nodes(), 5))
    h = gin(block, feat)
    assert h.shape == (block.number_of_dst_nodes(), 12)

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
def test_hetero_conv(agg):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]})
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(tf.keras.layers.Layer):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def call(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return tf.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
if __name__ == '__main__':
    test_graph_conv()
    test_edge_softmax()
    test_partial_edge_softmax()
    # test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    # test_set_trans()
    test_rgcn()
    # test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    # test_agnn_conv()
    # test_gated_graph_conv()
    # test_nn_conv()
    # test_gmm_conv()
    # test_dense_graph_conv()
    # test_dense_sage_conv()
    # test_dense_cheb_conv()
    # test_sequential()