test_nn.py 26.9 KB
Newer Older
1
2
3
import mxnet as mx
import networkx as nx
import numpy as np
Minjie Wang's avatar
Minjie Wang committed
4
import scipy as sp
5
import pytest
6
7
import dgl
import dgl.nn.mxnet as nn
8
import dgl.function as fn
9
import backend as F
10
11
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph, \
    random_block
Minjie Wang's avatar
Minjie Wang committed
12
from mxnet import autograd, gluon, nd
13

14
15
def check_close(a, b):
    assert np.allclose(a.asnumpy(), b.asnumpy(), rtol=1e-4, atol=1e-4)
16
17
18
19
20
21
22
23

def _AXWb(A, X, W, b):
    X = mx.nd.dot(X, W.data(X.context))
    Y = mx.nd.dot(A, X.reshape(X.shape[0], -1)).reshape(X.shape)
    return Y + b.data(X.context)

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
24
25
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
26

27
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
28
29
    conv.initialize(ctx=ctx)
    # test#1: basic
30
    h0 = F.ones((3, 5))
31
    h1 = conv(g, h0)
32
33
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
34
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
35
    # test#2: more-dim
36
    h0 = F.ones((3, 5, 5))
37
    h1 = conv(g, h0)
38
39
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
40
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
41
42
43
44
45

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#3: basic
46
    h0 = F.ones((3, 5))
47
    h1 = conv(g, h0)
48
49
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
50
    # test#4: basic
51
    h0 = F.ones((3, 5, 5))
52
    h1 = conv(g, h0)
53
54
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
55
56
57
58
59
60

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    with autograd.train_mode():
        # test#3: basic
61
        h0 = F.ones((3, 5))
62
        h1 = conv(g, h0)
63
64
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
65
        # test#4: basic
66
        h0 = F.ones((3, 5, 5))
67
        h1 = conv(g, h0)
68
69
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
70

71
    # test not override features
72
    g.ndata["h"] = 2 * F.ones((3, 1))
73
    h1 = conv(g, h0)
74
75
76
    assert len(g.ndata) == 1
    assert len(g.edata) == 0
    assert "h" in g.ndata
77
    check_close(g.ndata['h'], 2 * F.ones((3, 1)))
78

79
@pytest.mark.parametrize('g', get_cases(['path', 'bipartite', 'small', 'block'], exclude=['zero-degree']))
80
81
82
83
84
85
86
87
88
89
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [False])
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    conv.initialize(ctx=F.ctx())
    ext_w = F.randn((5, 2)).as_in_context(F.ctx())
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).as_in_context(F.ctx())
90
    h_dst = F.randn((ndst, 2)).as_in_context(F.ctx())
91
    if weight:
92
        h_out = conv(g, h)
93
    else:
94
95
96
97
98
99
100
101
102
103
104
        h_out = conv(g, h, ext_w)
    assert h_out.shape == (ndst, 2)

    if not isinstance(g, dgl.DGLGraph) and len(g.ntypes) == 2:
        # bipartite, should also accept pair of tensors
        if weight:
            h_out2 = conv(g, (h, h_dst))
        else:
            h_out2 = conv(g, (h, h_dst), ext_w)
        assert h_out2.shape == (ndst, 2)
        assert F.array_equal(h_out, h_out2)
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = mx.nd.dot(A, X1.reshape(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = mx.nd.dot(A, X2.reshape(X2.shape[0], -1))
    X2 = X2 * N
    X = mx.nd.concat(X, X1, X2, dim=-1)
    Y = mx.nd.dot(X, W)

    return Y + b

def test_tagconv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = mx.nd.power(g.in_degrees().astype('float32'), -0.5)

    conv = nn.TAGConv(5, 2, bias=True)
    conv.initialize(ctx=ctx)
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.ndim - 1)
    norm = norm.reshape(shp).as_in_context(h0.context)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.data(ctx), conv.h_bias.data(ctx)))

    conv = nn.TAGConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#2: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert h1.shape[-1] == 2

146
147
148
def test_gat_conv():
    ctx = F.ctx()

149
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
150
151
152
153
154
    gat = nn.GATConv(10, 20, 5) # n_heads = 5
    gat.initialize(ctx=ctx)
    print(gat)

    # test#1: basic
155
156
157
    feat = F.randn((20, 10))
    h = gat(g, feat)
    assert h.shape == (20, 5, 20)
158

159
160
161
162
163
164
165
    # test#2: bipartite
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gat = nn.GATConv((5, 10), 2, 4)
    gat.initialize(ctx=ctx)
    feat = (F.randn((100, 5)), F.randn((200, 10)))
    h = gat(g, feat)
    assert h.shape == (200, 4, 2)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
166

167
168
169
170
171
172
173
174
175
176
    # test#3: block
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].asnumpy())
    block = dgl.to_block(g, seed_nodes)
    gat = nn.GATConv(5, 2, 4)
    gat.initialize(ctx=ctx)
    feat = F.randn((block.number_of_src_nodes(), 5))
    h = gat(block, feat)
    assert h.shape == (block.number_of_dst_nodes(), 4, 2)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv(aggre_type):
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
    feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 200
203

204
205
206
207
208
209
210
211
212
213
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].asnumpy())
    block = dgl.to_block(g, seed_nodes)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((block.number_of_src_nodes(), 5))
    sage.initialize(ctx=ctx)
    h = sage(block, feat)
    assert h.shape[0] == block.number_of_dst_nodes()
    assert h.shape[-1] == 10

Mufei Li's avatar
Mufei Li committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    # Test the case for graphs without edges
    g = dgl.bipartite([], num_nodes=(5, 3))
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage.initialize(ctx=ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage.initialize(ctx=ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def test_gg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gg_conv = nn.GatedGraphConv(10, 20, 3, 4) # n_step = 3, n_etypes = 4
    gg_conv.initialize(ctx=ctx)
    print(gg_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = gg_conv(g, h0, etypes)
    assert h1.shape == (20, 20)

def test_cheb_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    cheb = nn.ChebConv(10, 20, 3) # k = 3
    cheb.initialize(ctx=ctx)
    print(cheb)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = cheb(g, h0)
    assert h1.shape == (20, 20)

def test_agnn_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    agnn_conv = nn.AGNNConv(0.1, True)
    agnn_conv.initialize(ctx=ctx)
    print(agnn_conv)

    # test#1: basic
266
267
268
269
270
271
272
273
    feat = F.randn((20, 10))
    h = agnn_conv(g, feat)
    assert h.shape == (20, 10)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = agnn_conv(g, feat)
    assert h.shape == (200, 5)
274

275
276
277
278
279
280
281
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].asnumpy())
    block = dgl.to_block(g, seed_nodes)
    feat = F.randn((block.number_of_src_nodes(), 5))
    h = agnn_conv(block, feat)
    assert h.shape == (block.number_of_dst_nodes(), 5)

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
def test_appnp_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    appnp_conv = nn.APPNPConv(3, 0.1, 0)
    appnp_conv.initialize(ctx=ctx)
    print(appnp_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = appnp_conv(g, h0)
    assert h1.shape == (20, 10)

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).tostype('default')
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        cheb.initialize(ctx=ctx)
        dense_cheb.initialize(ctx=ctx)

        for i in range(len(cheb.fc)):
            dense_cheb.fc[i].weight.set_data(
                cheb.fc[i].weight.data())
            if cheb.bias is not None:
                dense_cheb.bias.set_data(
                    cheb.bias.data())

        feat = F.randn((100, 5))
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
        assert F.allclose(out_cheb, out_dense_cheb)

317
318
319
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_graph_conv(g, norm_type):
320
321
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
322
323
    conv = nn.GraphConv(5, 2, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=norm_type, bias=True)
324
325
326
327
328
329
    conv.initialize(ctx=ctx)
    dense_conv.initialize(ctx=ctx)
    dense_conv.weight.set_data(
        conv.weight.data())
    dense_conv.bias.set_data(
        conv.bias.data())
330
    feat = F.randn((g.number_of_src_nodes(), 5))
331
332
333
334
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
    assert F.allclose(out_conv, out_dense_conv)

335
336
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_sage_conv(g):
337
338
339
340
341
342
343
344
345
346
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    sage.initialize(ctx=ctx)
    dense_sage.initialize(ctx=ctx)
    dense_sage.fc.weight.set_data(
        sage.fc_neigh.weight.data())
    dense_sage.fc.bias.set_data(
        sage.fc_neigh.bias.data())
347
348
349
350
351
352
353
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
354
355
356
357
358

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)

359
@pytest.mark.parametrize('g', [random_dglgraph(20), random_graph(20), random_bipartite(20, 10), random_block(20)])
360
def test_edge_conv(g):
361
362
363
364
365
366
367
    ctx = F.ctx()

    edge_conv = nn.EdgeConv(5, 2)
    edge_conv.initialize(ctx=ctx)
    print(edge_conv)

    # test #1: basic
368
    h0 = F.randn((g.number_of_src_nodes(), 5))
369
    if not g.is_homograph() and not g.is_block:
370
371
372
373
374
        # bipartite
        h1 = edge_conv(g, (h0, h0[:10]))
    else:
        h1 = edge_conv(g, h0)
    assert h1.shape == (g.number_of_dst_nodes(), 2)
375
376
377
378
379
380
381
382
383
384

def test_gin_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gin_conv = nn.GINConv(lambda x: x, 'mean', 0.1)
    gin_conv.initialize(ctx=ctx)
    print(gin_conv)

    # test #1: basic
385
386
387
388
389
390
391
392
393
394
    feat = F.randn((g.number_of_nodes(), 5))
    h = gin_conv(g, feat)
    assert h.shape == (20, 5)

    # test #2: bipartite
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = gin_conv(g, feat)
    return h.shape == (20, 5)

395
396
397
398
399
400
401
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].asnumpy())
    block = dgl.to_block(g, seed_nodes)
    feat = F.randn((block.number_of_src_nodes(), 5))
    h = gin_conv(block, feat)
    assert h.shape == (block.number_of_dst_nodes(), 12)

402
403
404
405

def test_gmm_conv():
    ctx = F.ctx()

406
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
407
408
    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
409
410
411
412
413
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)
414

415
416
417
    g = dgl.graph(nx.erdos_renyi_graph(20, 0.3))
    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
418
419
420
421
422
423
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)

424
425
426
427
428
429
430
431
432
433
    g = dgl.bipartite(sp.sparse.random(20, 10, 0.1))
    gmm_conv = nn.GMMConv((5, 4), 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
    # test #1: basic
    h0 = F.randn((g.number_of_src_nodes(), 5))
    hd = F.randn((g.number_of_dst_nodes(), 4))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, (h0, hd), pseudo)
    assert h1.shape == (g.number_of_dst_nodes(), 2)

434
435
436
437
438
439
440
441
442
443
444
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].asnumpy())
    block = dgl.to_block(g, seed_nodes)
    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'mean')
    gmm_conv.initialize(ctx=ctx)
    h0 = F.randn((block.number_of_src_nodes(), 5))
    pseudo = F.randn((block.number_of_edges(), 5))
    h = gmm_conv(block, h0, pseudo)
    assert h.shape[0] == block.number_of_dst_nodes()
    assert h.shape[-1] == 2

445
446
447
def test_nn_conv():
    ctx = F.ctx()

448
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
449
450
    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
451
452
453
454
455
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)
456

457
458
459
    g = dgl.graph(nx.erdos_renyi_graph(20, 0.3))
    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
460
461
462
463
464
465
    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)

466
467
468
469
470
471
472
473
474
475
    g = dgl.bipartite(sp.sparse.random(20, 10, 0.3))
    nn_conv = nn.NNConv((5, 4), 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
    # test #1: basic
    h0 = F.randn((g.number_of_src_nodes(), 5))
    hd = F.randn((g.number_of_dst_nodes(), 4))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, (h0, hd), etypes)
    assert h1.shape == (g.number_of_dst_nodes(), 2)

476
477
478
479
480
481
482
483
484
485
486
    g = dgl.graph(sp.sparse.random(100, 100, density=0.001))
    seed_nodes = np.unique(g.edges()[1].asnumpy())
    block = dgl.to_block(g, seed_nodes)
    nn_conv = nn.NNConv((5, 4), 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
    feat = F.randn((block.number_of_src_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h = nn_conv(block, feat, etypes)
    assert h.shape[0] == block.number_of_dst_nodes()
    assert h.shape[-1] == 2

487
488
489
490
491
492
493
494
495
496
497
498
499
def test_sg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    sgc = nn.SGConv(5, 2, 2)
    sgc.initialize(ctx=ctx)
    print(sgc)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sgc(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)

500
501
def test_set2set():
    g = dgl.DGLGraph(nx.path_graph(10))
502
    ctx = F.ctx()
503
504

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
505
    s2s.initialize(ctx=ctx)
506
507
508
    print(s2s)

    # test#1: basic
509
    h0 = F.randn((g.number_of_nodes(), 5))
510
    h1 = s2s(g, h0)
511
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
512
513
514

    # test#2: batched graph
    bg = dgl.batch([g, g, g])
515
    h0 = F.randn((bg.number_of_nodes(), 5))
516
    h1 = s2s(bg, h0)
517
518
519
520
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.ndim == 2

def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))
521
    ctx = F.ctx()
522
523

    gap = nn.GlobalAttentionPooling(gluon.nn.Dense(1), gluon.nn.Dense(10))
524
    gap.initialize(ctx=ctx)
525
526
    print(gap)
    # test#1: basic
527
    h0 = F.randn((g.number_of_nodes(), 5))
528
    h1 = gap(g, h0)
529
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
530
531
532

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
533
    h0 = F.randn((bg.number_of_nodes(), 5))
534
    h1 = gap(bg, h0)
535
536
537
538
539
540
541
542
543
544
545
546
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2

def test_simple_pool():
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
547
    h0 = F.randn((g.number_of_nodes(), 5))
548
    h1 = sum_pool(g, h0)
549
    check_close(F.squeeze(h1, 0), F.sum(h0, 0))
550
    h1 = avg_pool(g, h0)
551
    check_close(F.squeeze(h1, 0), F.mean(h0, 0))
552
    h1 = max_pool(g, h0)
553
    check_close(F.squeeze(h1, 0), F.max(h0, 0))
554
    h1 = sort_pool(g, h0)
555
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
556
557
558
559

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
560
    h0 = F.randn((bg.number_of_nodes(), 5))
561
    h1 = sum_pool(bg, h0)
562
563
564
565
566
    truth = mx.nd.stack(F.sum(h0[:15], 0),
                        F.sum(h0[15:20], 0),
                        F.sum(h0[20:35], 0),
                        F.sum(h0[35:40], 0),
                        F.sum(h0[40:55], 0), axis=0)
567
568
    check_close(h1, truth)

569
    h1 = avg_pool(bg, h0)
570
571
572
573
574
    truth = mx.nd.stack(F.mean(h0[:15], 0),
                        F.mean(h0[15:20], 0),
                        F.mean(h0[20:35], 0),
                        F.mean(h0[35:40], 0),
                        F.mean(h0[40:55], 0), axis=0)
575
576
    check_close(h1, truth)

577
    h1 = max_pool(bg, h0)
578
579
580
581
582
    truth = mx.nd.stack(F.max(h0[:15], 0),
                        F.max(h0[15:20], 0),
                        F.max(h0[20:35], 0),
                        F.max(h0[35:40], 0),
                        F.max(h0[40:55], 0), axis=0)
583
584
    check_close(h1, truth)

585
    h1 = sort_pool(bg, h0)
586
587
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

588
589
590
591
592
593
594
595
def uniform_attention(g, shape):
    a = mx.nd.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).reshape(target_shape).astype('float32')

def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
596
    edata = F.ones((g.number_of_edges(), 1))
597
    a = nn.edge_softmax(g, edata)
598
599
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
600
601
602
603
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

    # Test higher dimension case
604
    edata = F.ones((g.number_of_edges(), 3, 1))
605
    a = nn.edge_softmax(g, edata)
606
607
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
608
609
610
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.attach_grad()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with mx.autograd.record():
        y_1 = nn.edge_softmax(g, score, eids)
        y_1.backward(grad)
        grad_1 = score.grad

    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with mx.autograd.record():
        y_2 = nn.edge_softmax(subg, score)
        y_2.backward(grad)
        grad_2 = score.grad

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

Minjie Wang's avatar
Minjie Wang committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = nd.zeros((g.number_of_edges(), 1), ctx=ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randint(0, I, (100,), ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
def test_sequential():
    ctx = F.ctx()
    # test single graph
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # test multiple graphs
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.reshape(graph.number_of_nodes() // 2, 2, -1).sum(1)

    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05))
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2))
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8))
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
def test_hetero_conv(agg):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]})
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    conv.initialize(ctx=F.ctx())
    print(conv)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)
    conv.initialize(ctx=F.ctx())

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(mx.gluon.nn.Block):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None):  # mxnet does not support kwargs
            if arg1 is not None:
                self.carg1 += 1
            return F.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    conv.initialize(ctx=F.ctx())
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args)
    assert mod1.carg1 == 1
    assert mod2.carg1 == 1
    assert mod3.carg1 == 0

847
848
if __name__ == '__main__':
    test_graph_conv()
849
850
851
852
853
854
855
856
857
858
859
860
861
862
    test_gat_conv()
    test_sage_conv()
    test_gg_conv()
    test_cheb_conv()
    test_agnn_conv()
    test_appnp_conv()
    test_dense_cheb_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_edge_conv()
    test_gin_conv()
    test_gmm_conv()
    test_nn_conv()
    test_sg_conv()
863
    test_edge_softmax()
864
    test_partial_edge_softmax()
865
866
867
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
Minjie Wang's avatar
Minjie Wang committed
868
    test_rgcn()
869
    test_sequential()