main.py 6.4 KB
Newer Older
Smile's avatar
Smile committed
1
2
3
4
5
6
7
8
9
10
11
12
import time
from tqdm import tqdm
import numpy as np
import torch
from torch.nn import BCEWithLogitsLoss
from dgl import NID, EID
from dgl.dataloading import GraphDataLoader
from utils import parse_arguments
from utils import load_ogb_dataset, evaluate_hits
from sampler import SEALData
from model import GCN, DGCNN
from logger import LightLogging
KounianhuaDu's avatar
KounianhuaDu committed
13
14
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
Smile's avatar
Smile committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

'''
Part of the code are adapted from
https://github.com/facebookresearch/SEAL_OGB
'''


def train(model, dataloader, loss_fn, optimizer, device, num_graphs=32, total_graphs=None):
    model.train()

    total_loss = 0
    for g, labels in tqdm(dataloader, ncols=100):
        g = g.to(device)
        labels = labels.to(device)
        optimizer.zero_grad()
        logits = model(g, g.ndata['z'], g.ndata[NID], g.edata[EID])
        loss = loss_fn(logits, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item() * num_graphs

    return total_loss / total_graphs


@torch.no_grad()
def evaluate(model, dataloader, device):
    model.eval()

    y_pred, y_true = [], []
    for g, labels in tqdm(dataloader, ncols=100):
        g = g.to(device)
        logits = model(g, g.ndata['z'], g.ndata[NID], g.edata[EID])
        y_pred.append(logits.view(-1).cpu())
        y_true.append(labels.view(-1).cpu().to(torch.float))

    y_pred, y_true = torch.cat(y_pred), torch.cat(y_true)
    pos_pred = y_pred[y_true == 1]
    neg_pred = y_pred[y_true == 0]

    return pos_pred, neg_pred


def main(args, print_fn=print):
    print_fn("Experiment arguments: {}".format(args))

    if args.random_seed:
        torch.manual_seed(args.random_seed)
    else:
        torch.manual_seed(123)
    # Load dataset
    if args.dataset.startswith('ogbl'):
        graph, split_edge = load_ogb_dataset(args.dataset)
    else:
        raise NotImplementedError

    num_nodes = graph.num_nodes()

    # set gpu
    if args.gpu_id >= 0 and torch.cuda.is_available():
        device = 'cuda:{}'.format(args.gpu_id)
    else:
        device = 'cpu'

    if args.dataset == 'ogbl-collab':
        # ogbl-collab dataset is multi-edge graph
        use_coalesce = True
    else:
        use_coalesce = False

    # Generate positive and negative edges and corresponding labels
    # Sampling subgraphs and generate node labeling features
    seal_data = SEALData(g=graph, split_edge=split_edge, hop=args.hop, neg_samples=args.neg_samples,
                         subsample_ratio=args.subsample_ratio, use_coalesce=use_coalesce, prefix=args.dataset,
                         save_dir=args.save_dir, num_workers=args.num_workers, print_fn=print_fn)
    node_attribute = seal_data.ndata['feat']
90
    edge_weight = seal_data.edata['weight'].float()
Smile's avatar
Smile committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    train_data = seal_data('train')
    val_data = seal_data('valid')
    test_data = seal_data('test')

    train_graphs = len(train_data.graph_list)

    # Set data loader

    train_loader = GraphDataLoader(train_data, batch_size=args.batch_size, num_workers=args.num_workers)
    val_loader = GraphDataLoader(val_data, batch_size=args.batch_size, num_workers=args.num_workers)
    test_loader = GraphDataLoader(test_data, batch_size=args.batch_size, num_workers=args.num_workers)

    # set model
    if args.model == 'gcn':
        model = GCN(num_layers=args.num_layers,
                    hidden_units=args.hidden_units,
                    gcn_type=args.gcn_type,
                    pooling_type=args.pooling,
                    node_attributes=node_attribute,
                    edge_weights=edge_weight,
                    node_embedding=None,
                    use_embedding=True,
                    num_nodes=num_nodes,
                    dropout=args.dropout)
    elif args.model == 'dgcnn':
        model = DGCNN(num_layers=args.num_layers,
                      hidden_units=args.hidden_units,
                      k=args.sort_k,
                      gcn_type=args.gcn_type,
                      node_attributes=node_attribute,
                      edge_weights=edge_weight,
                      node_embedding=None,
                      use_embedding=True,
                      num_nodes=num_nodes,
                      dropout=args.dropout)
    else:
        raise ValueError('Model error')

    model = model.to(device)
    parameters = model.parameters()
    optimizer = torch.optim.Adam(parameters, lr=args.lr)
    loss_fn = BCEWithLogitsLoss()
    print_fn("Total parameters: {}".format(sum([p.numel() for p in model.parameters()])))

    # train and evaluate loop
    summary_val = []
    summary_test = []
    for epoch in range(args.epochs):
        start_time = time.time()
        loss = train(model=model,
                     dataloader=train_loader,
                     loss_fn=loss_fn,
                     optimizer=optimizer,
                     device=device,
                     num_graphs=args.batch_size,
                     total_graphs=train_graphs)
        train_time = time.time()
        if epoch % args.eval_steps == 0:
            val_pos_pred, val_neg_pred = evaluate(model=model,
                                                  dataloader=val_loader,
                                                  device=device)
            test_pos_pred, test_neg_pred = evaluate(model=model,
                                                    dataloader=test_loader,
                                                    device=device)

            val_metric = evaluate_hits(args.dataset, val_pos_pred, val_neg_pred, args.hits_k)
            test_metric = evaluate_hits(args.dataset, test_pos_pred, test_neg_pred, args.hits_k)
            evaluate_time = time.time()
            print_fn("Epoch-{}, train loss: {:.4f}, hits@{}: val-{:.4f}, test-{:.4f}, "
                     "cost time: train-{:.1f}s, total-{:.1f}s".format(epoch, loss, args.hits_k, val_metric, test_metric,
                                                                      train_time - start_time,
                                                                      evaluate_time - start_time))
            summary_val.append(val_metric)
            summary_test.append(test_metric)

    summary_test = np.array(summary_test)

    print_fn("Experiment Results:")
    print_fn("Best hits@{}: {:.4f}, epoch: {}".format(args.hits_k, np.max(summary_test), np.argmax(summary_test)))


if __name__ == '__main__':
    args = parse_arguments()
    logger = LightLogging(log_name='SEAL', log_path='./logs')
    main(args, logger.info)