main.py 6.32 KB
Newer Older
Smile's avatar
Smile committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import time
from tqdm import tqdm
import numpy as np
import torch
from torch.nn import BCEWithLogitsLoss
from dgl import NID, EID
from dgl.dataloading import GraphDataLoader
from utils import parse_arguments
from utils import load_ogb_dataset, evaluate_hits
from sampler import SEALData
from model import GCN, DGCNN
from logger import LightLogging

'''
Part of the code are adapted from
https://github.com/facebookresearch/SEAL_OGB
'''


def train(model, dataloader, loss_fn, optimizer, device, num_graphs=32, total_graphs=None):
    model.train()

    total_loss = 0
    for g, labels in tqdm(dataloader, ncols=100):
        g = g.to(device)
        labels = labels.to(device)
        optimizer.zero_grad()
        logits = model(g, g.ndata['z'], g.ndata[NID], g.edata[EID])
        loss = loss_fn(logits, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item() * num_graphs

    return total_loss / total_graphs


@torch.no_grad()
def evaluate(model, dataloader, device):
    model.eval()

    y_pred, y_true = [], []
    for g, labels in tqdm(dataloader, ncols=100):
        g = g.to(device)
        logits = model(g, g.ndata['z'], g.ndata[NID], g.edata[EID])
        y_pred.append(logits.view(-1).cpu())
        y_true.append(labels.view(-1).cpu().to(torch.float))

    y_pred, y_true = torch.cat(y_pred), torch.cat(y_true)
    pos_pred = y_pred[y_true == 1]
    neg_pred = y_pred[y_true == 0]

    return pos_pred, neg_pred


def main(args, print_fn=print):
    print_fn("Experiment arguments: {}".format(args))

    if args.random_seed:
        torch.manual_seed(args.random_seed)
    else:
        torch.manual_seed(123)
    # Load dataset
    if args.dataset.startswith('ogbl'):
        graph, split_edge = load_ogb_dataset(args.dataset)
    else:
        raise NotImplementedError

    num_nodes = graph.num_nodes()

    # set gpu
    if args.gpu_id >= 0 and torch.cuda.is_available():
        device = 'cuda:{}'.format(args.gpu_id)
    else:
        device = 'cpu'

    if args.dataset == 'ogbl-collab':
        # ogbl-collab dataset is multi-edge graph
        use_coalesce = True
    else:
        use_coalesce = False

    # Generate positive and negative edges and corresponding labels
    # Sampling subgraphs and generate node labeling features
    seal_data = SEALData(g=graph, split_edge=split_edge, hop=args.hop, neg_samples=args.neg_samples,
                         subsample_ratio=args.subsample_ratio, use_coalesce=use_coalesce, prefix=args.dataset,
                         save_dir=args.save_dir, num_workers=args.num_workers, print_fn=print_fn)
    node_attribute = seal_data.ndata['feat']
    edge_weight = seal_data.edata['edge_weight'].float()

    train_data = seal_data('train')
    val_data = seal_data('valid')
    test_data = seal_data('test')

    train_graphs = len(train_data.graph_list)

    # Set data loader

    train_loader = GraphDataLoader(train_data, batch_size=args.batch_size, num_workers=args.num_workers)
    val_loader = GraphDataLoader(val_data, batch_size=args.batch_size, num_workers=args.num_workers)
    test_loader = GraphDataLoader(test_data, batch_size=args.batch_size, num_workers=args.num_workers)

    # set model
    if args.model == 'gcn':
        model = GCN(num_layers=args.num_layers,
                    hidden_units=args.hidden_units,
                    gcn_type=args.gcn_type,
                    pooling_type=args.pooling,
                    node_attributes=node_attribute,
                    edge_weights=edge_weight,
                    node_embedding=None,
                    use_embedding=True,
                    num_nodes=num_nodes,
                    dropout=args.dropout)
    elif args.model == 'dgcnn':
        model = DGCNN(num_layers=args.num_layers,
                      hidden_units=args.hidden_units,
                      k=args.sort_k,
                      gcn_type=args.gcn_type,
                      node_attributes=node_attribute,
                      edge_weights=edge_weight,
                      node_embedding=None,
                      use_embedding=True,
                      num_nodes=num_nodes,
                      dropout=args.dropout)
    else:
        raise ValueError('Model error')

    model = model.to(device)
    parameters = model.parameters()
    optimizer = torch.optim.Adam(parameters, lr=args.lr)
    loss_fn = BCEWithLogitsLoss()
    print_fn("Total parameters: {}".format(sum([p.numel() for p in model.parameters()])))

    # train and evaluate loop
    summary_val = []
    summary_test = []
    for epoch in range(args.epochs):
        start_time = time.time()
        loss = train(model=model,
                     dataloader=train_loader,
                     loss_fn=loss_fn,
                     optimizer=optimizer,
                     device=device,
                     num_graphs=args.batch_size,
                     total_graphs=train_graphs)
        train_time = time.time()
        if epoch % args.eval_steps == 0:
            val_pos_pred, val_neg_pred = evaluate(model=model,
                                                  dataloader=val_loader,
                                                  device=device)
            test_pos_pred, test_neg_pred = evaluate(model=model,
                                                    dataloader=test_loader,
                                                    device=device)

            val_metric = evaluate_hits(args.dataset, val_pos_pred, val_neg_pred, args.hits_k)
            test_metric = evaluate_hits(args.dataset, test_pos_pred, test_neg_pred, args.hits_k)
            evaluate_time = time.time()
            print_fn("Epoch-{}, train loss: {:.4f}, hits@{}: val-{:.4f}, test-{:.4f}, "
                     "cost time: train-{:.1f}s, total-{:.1f}s".format(epoch, loss, args.hits_k, val_metric, test_metric,
                                                                      train_time - start_time,
                                                                      evaluate_time - start_time))
            summary_val.append(val_metric)
            summary_test.append(test_metric)

    summary_test = np.array(summary_test)

    print_fn("Experiment Results:")
    print_fn("Best hits@{}: {:.4f}, epoch: {}".format(args.hits_k, np.max(summary_test), np.argmax(summary_test)))


if __name__ == '__main__':
    args = parse_arguments()
    logger = LightLogging(log_name='SEAL', log_path='./logs')
    main(args, logger.info)