train_partseg.py 8.43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import dgl
from dgl.data.utils import download, get_download_dir

from functools import partial
import tqdm
import urllib
import os
import argparse
15
import time
16
17
18

from ShapeNet import ShapeNet
from pointnet_partseg import PointNetPartSeg, PartSegLoss
19
from pointnet2_partseg import PointNet2MSGPartSeg, PointNet2SSGPartSeg
20
21

parser = argparse.ArgumentParser()
22
parser.add_argument('--model', type=str, default='pointnet')
23
24
25
26
27
28
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=250)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=16)
29
parser.add_argument('--tensorboard', action='store_true')
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
args = parser.parse_args()

num_workers = args.num_workers
batch_size = args.batch_size

def collate(samples):
    graphs, cat = map(list, zip(*samples))
    return dgl.batch(graphs), cat

CustomDataLoader = partial(
        DataLoader,
        num_workers=num_workers,
        batch_size=batch_size,
        shuffle=True,
        drop_last=True)

def train(net, opt, scheduler, train_loader, dev):
    category_list = sorted(list(shapenet.seg_classes.keys()))
    eye_mat = np.eye(16)
    net.train()

    total_loss = 0
    num_batches = 0
    total_correct = 0
    count = 0
55
    start = time.time()
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    with tqdm.tqdm(train_loader, ascii=True) as tq:
        for data, label, cat in tq:
            num_examples = data.shape[0]
            data = data.to(dev, dtype=torch.float)
            label = label.to(dev, dtype=torch.long).view(-1)
            opt.zero_grad()
            cat_ind = [category_list.index(c) for c in cat]
            # An one-hot encoding for the object category
            cat_tensor = torch.tensor(eye_mat[cat_ind]).to(dev, dtype=torch.float).repeat(1, 2048)
            cat_tensor = cat_tensor.view(num_examples, -1, 16).permute(0,2,1)
            logits = net(data, cat_tensor)
            loss = L(logits, label)
            loss.backward()
            opt.step()

            _, preds = logits.max(1)

            count += num_examples * 2048
            loss = loss.item()
            total_loss += loss
            num_batches += 1
            correct = (preds.view(-1) == label).sum().item()
            total_correct += correct

80
81
82
            AvgLoss = total_loss / num_batches
            AvgAcc = total_correct / count

83
            tq.set_postfix({
84
85
                'AvgLoss': '%.5f' % AvgLoss,
                'AvgAcc': '%.5f' % AvgAcc})
86
    scheduler.step()
87
88
    end = time.time()
    return data, preds, AvgLoss, AvgAcc, end-start
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

def mIoU(preds, label, cat, cat_miou, seg_classes):
    for i in range(preds.shape[0]):
        shape_iou = 0
        n = len(seg_classes[cat[i]])
        for cls in seg_classes[cat[i]]:
            pred_set = set(np.where(preds[i,:] == cls)[0])
            label_set = set(np.where(label[i,:] == cls)[0])
            union = len(pred_set.union(label_set))
            inter = len(pred_set.intersection(label_set))
            if union == 0:
                shape_iou += 1
            else:
                shape_iou += inter / union
        shape_iou /= n
        cat_miou[cat[i]][0] += shape_iou
        cat_miou[cat[i]][1] += 1

    return cat_miou

def evaluate(net, test_loader, dev, per_cat_verbose=False):
    category_list = sorted(list(shapenet.seg_classes.keys()))
    eye_mat = np.eye(16)
    net.eval()

    cat_miou = {}
    for k in shapenet.seg_classes.keys():
        cat_miou[k] = [0, 0]
    miou = 0
    count = 0
    per_cat_miou = 0
    per_cat_count = 0

    with torch.no_grad():
        with tqdm.tqdm(test_loader, ascii=True) as tq:
            for data, label, cat in tq:
                num_examples = data.shape[0]
                data = data.to(dev, dtype=torch.float)
                label = label.to(dev, dtype=torch.long)
                cat_ind = [category_list.index(c) for c in cat]
                cat_tensor = torch.tensor(eye_mat[cat_ind]).to(dev, dtype=torch.float).repeat(1, 2048)
                cat_tensor = cat_tensor.view(num_examples, -1, 16).permute(0,2,1)
                logits = net(data, cat_tensor)
                _, preds = logits.max(1)

                cat_miou = mIoU(preds.cpu().numpy(),
                                label.view(num_examples, -1).cpu().numpy(),
                                cat, cat_miou, shapenet.seg_classes)
                for _, v in cat_miou.items():
                    if v[1] > 0:
                        miou += v[0]
                        count += v[1]
                        per_cat_miou += v[0] / v[1]
                        per_cat_count += 1
                tq.set_postfix({
                    'mIoU': '%.5f' % (miou / count),
                    'per Category mIoU': '%.5f' % (miou / count)})
    if per_cat_verbose:
        print("Per-Category mIoU:")
        for k, v in cat_miou.items():
            if v[1] > 0:
                print("%s mIoU=%.5f" % (k, v[0] / v[1]))
            else:
                print("%s mIoU=%.5f" % (k, 1))
    return miou / count, per_cat_miou / per_cat_count


dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# dev = "cpu"
158
159
160
161
162
163
if args.model == 'pointnet':
    net = PointNetPartSeg(50, 3, 2048)
elif args.model == 'pointnet2_ssg':
    net = PointNet2SSGPartSeg(50, batch_size, input_dims=6)
elif args.model == 'pointnet2_msg':
    net = PointNet2MSGPartSeg(50, batch_size, input_dims=6)
164
165
166
167
168
169
170
171
172
173
174
175
176
177

net = net.to(dev)
if args.load_model_path:
    net.load_state_dict(torch.load(args.load_model_path, map_location=dev))

opt = optim.Adam(net.parameters(), lr=0.001, weight_decay=1e-4)
scheduler = optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.5)
L = PartSegLoss()

shapenet = ShapeNet(2048, normal_channel=False)

train_loader = CustomDataLoader(shapenet.trainval())
test_loader = CustomDataLoader(shapenet.test())

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Tensorboard
if args.tensorboard:
    import torchvision
    from torch.utils.tensorboard import SummaryWriter
    from torchvision import datasets, transforms
    writer = SummaryWriter()
# Select 50 distinct colors for different parts
color_map = torch.tensor([
    [47, 79, 79],[139, 69, 19],[112, 128, 144],[85, 107, 47],[139, 0, 0],[128, 128, 0],[72, 61, 139],[0, 128, 0],[188, 143, 143],[60, 179, 113],
    [205, 133, 63],[0, 139, 139],[70, 130, 180],[205, 92, 92],[154, 205, 50],[0, 0, 139],[50, 205, 50],[250, 250, 250],[218, 165, 32],[139, 0, 139],
    [10, 10, 10],[176, 48, 96],[72, 209, 204],[153, 50, 204],[255, 69, 0],[255, 145, 0],[0, 0, 205],[255, 255, 0],[0, 255, 0],[233, 150, 122],
    [220, 20, 60],[0, 191, 255],[160, 32, 240],[192,192,192],[173, 255, 47],[218, 112, 214],[216, 191, 216],[255, 127, 80],[255, 0, 255],[100, 149, 237],
    [128,128,128],[221, 160, 221],[144, 238, 144],[123, 104, 238],[255, 160, 122],[175, 238, 238],[238, 130, 238],[127, 255, 212],[255, 218, 185],[255, 105, 180],
])
# paint each point according to its pred
def paint(batched_points):
    B, N = batched_points.shape
    colored = color_map[batched_points].squeeze(2)
    return colored

198
199
200
201
best_test_miou = 0
best_test_per_cat_miou = 0

for epoch in range(args.num_epochs):
202
    data, preds, AvgLoss, AvgAcc, training_time = train(net, opt, scheduler, train_loader, dev)
203
204
205
206
207
208
209
210
211
212
    if (epoch + 1) % 5 == 0:
        print('Epoch #%d Testing' % epoch)
        test_miou, test_per_cat_miou = evaluate(net, test_loader, dev, (epoch + 1) % 5 ==0)
        if test_miou > best_test_miou:
            best_test_miou = test_miou
            best_test_per_cat_miou = test_per_cat_miou
            if args.save_model_path:
                torch.save(net.state_dict(), args.save_model_path)
        print('Current test mIoU: %.5f (best: %.5f), per-Category mIoU: %.5f (best: %.5f)' % (
               test_miou, best_test_miou, test_per_cat_miou, best_test_per_cat_miou))
213
214
215
216
217
218
219
220
221
222
    # Tensorboard
    if args.tensorboard:
        colored = paint(preds)
        writer.add_mesh('data', vertices=data, colors=colored, global_step=epoch)
        writer.add_scalar('training time for one epoch', training_time, global_step=epoch)
        writer.add_scalar('AvgLoss', AvgLoss, global_step=epoch)
        writer.add_scalar('AvgAcc', AvgAcc, global_step=epoch)
        if (epoch + 1) % 5 == 0:
            writer.add_scalar('test mIoU', test_miou, global_step=epoch)
            writer.add_scalar('best test mIoU', best_test_miou, global_step=epoch)