train_partseg.py 6.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import dgl
from dgl.data.utils import download, get_download_dir

from functools import partial
import tqdm
import urllib
import os
import argparse

from ShapeNet import ShapeNet
from pointnet_partseg import PointNetPartSeg, PartSegLoss

parser = argparse.ArgumentParser()
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=250)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=16)
args = parser.parse_args()

num_workers = args.num_workers
batch_size = args.batch_size

def collate(samples):
    graphs, cat = map(list, zip(*samples))
    return dgl.batch(graphs), cat

CustomDataLoader = partial(
        DataLoader,
        num_workers=num_workers,
        batch_size=batch_size,
        shuffle=True,
        drop_last=True)

def train(net, opt, scheduler, train_loader, dev):
    category_list = sorted(list(shapenet.seg_classes.keys()))
    eye_mat = np.eye(16)
    net.train()

    total_loss = 0
    num_batches = 0
    total_correct = 0
    count = 0
    with tqdm.tqdm(train_loader, ascii=True) as tq:
        for data, label, cat in tq:
            num_examples = data.shape[0]
            data = data.to(dev, dtype=torch.float)
            label = label.to(dev, dtype=torch.long).view(-1)
            opt.zero_grad()
            cat_ind = [category_list.index(c) for c in cat]
            # An one-hot encoding for the object category
            cat_tensor = torch.tensor(eye_mat[cat_ind]).to(dev, dtype=torch.float).repeat(1, 2048)
            cat_tensor = cat_tensor.view(num_examples, -1, 16).permute(0,2,1)
            logits = net(data, cat_tensor)
            loss = L(logits, label)
            loss.backward()
            opt.step()

            _, preds = logits.max(1)

            count += num_examples * 2048
            loss = loss.item()
            total_loss += loss
            num_batches += 1
            correct = (preds.view(-1) == label).sum().item()
            total_correct += correct

            tq.set_postfix({
                'AvgLoss': '%.5f' % (total_loss / num_batches),
                'AvgAcc': '%.5f' % (total_correct / count)})
    scheduler.step()

def mIoU(preds, label, cat, cat_miou, seg_classes):
    for i in range(preds.shape[0]):
        shape_iou = 0
        n = len(seg_classes[cat[i]])
        for cls in seg_classes[cat[i]]:
            pred_set = set(np.where(preds[i,:] == cls)[0])
            label_set = set(np.where(label[i,:] == cls)[0])
            union = len(pred_set.union(label_set))
            inter = len(pred_set.intersection(label_set))
            if union == 0:
                shape_iou += 1
            else:
                shape_iou += inter / union
        shape_iou /= n
        cat_miou[cat[i]][0] += shape_iou
        cat_miou[cat[i]][1] += 1

    return cat_miou

def evaluate(net, test_loader, dev, per_cat_verbose=False):
    category_list = sorted(list(shapenet.seg_classes.keys()))
    eye_mat = np.eye(16)
    net.eval()

    cat_miou = {}
    for k in shapenet.seg_classes.keys():
        cat_miou[k] = [0, 0]
    miou = 0
    count = 0
    per_cat_miou = 0
    per_cat_count = 0

    with torch.no_grad():
        with tqdm.tqdm(test_loader, ascii=True) as tq:
            for data, label, cat in tq:
                num_examples = data.shape[0]
                data = data.to(dev, dtype=torch.float)
                label = label.to(dev, dtype=torch.long)
                cat_ind = [category_list.index(c) for c in cat]
                cat_tensor = torch.tensor(eye_mat[cat_ind]).to(dev, dtype=torch.float).repeat(1, 2048)
                cat_tensor = cat_tensor.view(num_examples, -1, 16).permute(0,2,1)
                logits = net(data, cat_tensor)
                _, preds = logits.max(1)

                cat_miou = mIoU(preds.cpu().numpy(),
                                label.view(num_examples, -1).cpu().numpy(),
                                cat, cat_miou, shapenet.seg_classes)
                for _, v in cat_miou.items():
                    if v[1] > 0:
                        miou += v[0]
                        count += v[1]
                        per_cat_miou += v[0] / v[1]
                        per_cat_count += 1
                tq.set_postfix({
                    'mIoU': '%.5f' % (miou / count),
                    'per Category mIoU': '%.5f' % (miou / count)})
    if per_cat_verbose:
        print("Per-Category mIoU:")
        for k, v in cat_miou.items():
            if v[1] > 0:
                print("%s mIoU=%.5f" % (k, v[0] / v[1]))
            else:
                print("%s mIoU=%.5f" % (k, 1))
    return miou / count, per_cat_miou / per_cat_count


dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# dev = "cpu"

net = PointNetPartSeg(50, 3, 2048)
net = net.to(dev)
if args.load_model_path:
    net.load_state_dict(torch.load(args.load_model_path, map_location=dev))

opt = optim.Adam(net.parameters(), lr=0.001, weight_decay=1e-4)
scheduler = optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.5)
L = PartSegLoss()

shapenet = ShapeNet(2048, normal_channel=False)

train_loader = CustomDataLoader(shapenet.trainval())
test_loader = CustomDataLoader(shapenet.test())

best_test_miou = 0
best_test_per_cat_miou = 0

for epoch in range(args.num_epochs):
    train(net, opt, scheduler, train_loader, dev)
    if (epoch + 1) % 5 == 0:
        print('Epoch #%d Testing' % epoch)
        test_miou, test_per_cat_miou = evaluate(net, test_loader, dev, (epoch + 1) % 5 ==0)
        if test_miou > best_test_miou:
            best_test_miou = test_miou
            best_test_per_cat_miou = test_per_cat_miou
            if args.save_model_path:
                torch.save(net.state_dict(), args.save_model_path)
        print('Current test mIoU: %.5f (best: %.5f), per-Category mIoU: %.5f (best: %.5f)' % (
               test_miou, best_test_miou, test_per_cat_miou, best_test_per_cat_miou))