csc_sampling_graph.cc 31.1 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <cmath>
#include <limits>
13
14
#include <tuple>
#include <vector>
15

16
#include "./random.h"
17
18
#include "./shared_memory_utils.h"

19
20
21
22
namespace graphbolt {
namespace sampling {

CSCSamplingGraph::CSCSamplingGraph(
23
    const torch::Tensor& indptr, const torch::Tensor& indices,
24
    const torch::optional<torch::Tensor>& node_type_offset,
25
26
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
27
    : indptr_(indptr),
28
      indices_(indices),
29
      node_type_offset_(node_type_offset),
30
31
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
32
33
34
35
36
37
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
38
    const torch::Tensor& indptr, const torch::Tensor& indices,
39
    const torch::optional<torch::Tensor>& node_type_offset,
40
41
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
42
43
44
45
46
47
48
49
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
50
51
52
53
54
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
55
  return c10::make_intrusive<CSCSamplingGraph>(
56
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
57
58
}

59
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
60
61
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
62
63
64
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
65
66
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
67
68
69
70
71
72
73
74
75
76
77
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
78
79
80
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
81
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
82
83
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
84
85
86
87
88
89
90
91
92
93
94
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
95
96
}

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
127
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
128
129
130
131
132
133
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

134
135
template <SamplerType S>
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighborsImpl(
136
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
137
    bool replace, bool return_eids,
138
139
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<S> args) const {
140
  const int64_t num_nodes = nodes.size(0);
141
142
143
  // If true, perform sampling for each edge type of each node, otherwise just
  // sample once for each node with no regard of edge types.
  bool consider_etype = (fanouts.size() > 1);
144
145
146
147
  std::vector<torch::Tensor> picked_neighbors_per_node(num_nodes);
  torch::Tensor num_picked_neighbors_per_node =
      torch::zeros({num_nodes + 1}, indptr_.options());

148
149
150
151
152
153
154
155
156
157
158
159
160
161
  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "parallel_for", ([&] {
        torch::parallel_for(0, num_nodes, 32, [&](scalar_t b, scalar_t e) {
          const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
          for (scalar_t i = b; i < e; ++i) {
            const auto nid = nodes[i].item<int64_t>();
            TORCH_CHECK(
                nid >= 0 && nid < NumNodes(),
                "The seed nodes' IDs should fall within the range of the "
                "graph's node IDs.");
            const auto offset = indptr_data[nid];
            const auto num_neighbors = indptr_data[nid + 1] - offset;

            if (num_neighbors == 0) {
162
163
              // To avoid crashing during concatenation in the master thread,
              // initializing with empty tensors.
164
165
166
167
168
169
170
171
              picked_neighbors_per_node[i] =
                  torch::tensor({}, indptr_.options());
              continue;
            }

            if (consider_etype) {
              picked_neighbors_per_node[i] = PickByEtype(
                  offset, num_neighbors, fanouts, replace, indptr_.options(),
172
                  type_per_edge_.value(), probs_or_mask, args);
173
174
175
            } else {
              picked_neighbors_per_node[i] = Pick(
                  offset, num_neighbors, fanouts[0], replace, indptr_.options(),
176
                  probs_or_mask, args);
177
178
179
180
181
182
            }
            num_picked_neighbors_per_node[i + 1] =
                picked_neighbors_per_node[i].size(0);
          }
        });  // End of the thread.
      }));
183
184
185
186
187
188
189

  torch::Tensor subgraph_indptr =
      torch::cumsum(num_picked_neighbors_per_node, 0);

  torch::Tensor picked_eids = torch::cat(picked_neighbors_per_node);
  torch::Tensor subgraph_indices =
      torch::index_select(indices_, 0, picked_eids);
190
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;
191
  if (type_per_edge_.has_value()) {
192
193
    subgraph_type_per_edge =
        torch::index_select(type_per_edge_.value(), 0, picked_eids);
194
  }
195
196
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
197
  return c10::make_intrusive<SampledSubgraph>(
198
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
199
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
200
201
}

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
        nodes, fanouts, replace, return_eids, probs_or_mask, args);
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
        nodes, fanouts, replace, return_eids, probs_or_mask, args);
  }
}

230
231
232
233
234
235
236
237
238
239
240
241
std::tuple<torch::Tensor, torch::Tensor>
CSCSamplingGraph::SampleNegativeEdgesUniform(
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

242
243
244
245
246
247
248
249
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
250
      optional_tensors[2], optional_tensors[3], torch::nullopt);
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

272
273
274
275
276
277
278
279
280
281
282
283
284
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
285
 * @param replace Boolean indicating whether the sample is performed with or
286
287
288
289
290
291
292
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor UniformPick(
293
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
294
295
    const torch::TensorOptions& options) {
  torch::Tensor picked_neighbors;
296
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
297
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
298
299
300
  } else if (replace) {
    picked_neighbors =
        torch::randint(offset, offset + num_neighbors, {fanout}, options);
301
  } else {
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    picked_neighbors = torch::empty({fanout}, options);
    AT_DISPATCH_INTEGRAL_TYPES(
        picked_neighbors.scalar_type(), "UniformPick", ([&] {
          scalar_t* picked_neighbors_data =
              picked_neighbors.data_ptr<scalar_t>();
          // We use different sampling strategies for different sampling case.
          if (fanout >= num_neighbors / 10) {
            // [Algorithm]
            // This algorithm is conceptually related to the Fisher-Yates
            // shuffle.
            //
            // [Complexity Analysis]
            // This algorithm's memory complexity is O(num_neighbors), but
            // it generates fewer random numbers (O(fanout)).
            //
            // (Compare) Reservoir algorithm is one of the most classical
            // sampling algorithms. Both the reservoir algorithm and our
            // algorithm offer distinct advantages, we need to compare to
            // illustrate our trade-offs.
            // The reservoir algorithm is memory-efficient (O(fanout)) but
            // creates many random numbers (O(num_neighbors)), which is
            // costly.
            //
            // [Practical Consideration]
            // Use this algorithm when `fanout >= num_neighbors / 10` to
            // reduce computation.
            // In this scenarios above, memory complexity is not a concern due
            // to the small size of both `fanout` and `num_neighbors`. And it
            // is efficient to allocate a small amount of memory. So the
            // algorithm performence is great in this case.
            std::vector<scalar_t> seq(num_neighbors);
            // Assign the seq with [offset, offset + num_neighbors].
            std::iota(seq.begin(), seq.end(), offset);
            for (int64_t i = 0; i < fanout; ++i) {
              auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
              std::swap(seq[i], seq[j]);
            }
            // Save the randomly sampled fanout elements to the output tensor.
            std::copy(seq.begin(), seq.begin() + fanout, picked_neighbors_data);
          } else if (fanout < 64) {
            // [Algorithm]
            // Use linear search to verify uniqueness.
            //
            // [Complexity Analysis]
            // Since the set of numbers is small (up to 64), so it is more
            // cost-effective for the CPU to use this algorithm.
            auto begin = picked_neighbors_data;
            auto end = picked_neighbors_data + fanout;

            while (begin != end) {
              // Put the new random number in the last position.
              *begin = RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors);
              // Check if a new value doesn't exist in current
              // range(picked_neighbors_data, begin). Otherwise get a new
              // value until we haven't unique range of elements.
              auto it = std::find(picked_neighbors_data, begin, *begin);
              if (it == begin) ++begin;
            }
          } else {
            // [Algorithm]
            // Use hash-set to verify uniqueness. In the best scenario, the
            // time complexity is O(fanout), assuming no conflicts occur.
            //
            // [Complexity Analysis]
            // Let K = (fanout / num_neighbors), the expected number of extra
            // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
            // means in the worst case scenario, the time complexity is
            // O(num_neighbors^2).
            //
            // [Practical Consideration]
            // In practice, we set the threshold K to 1/10. This trade-off is
            // due to the slower performance of std::unordered_set, which
            // would otherwise increase the sampling cost. By doing so, we
            // achieve a balance between theoretical efficiency and practical
            // performance.
            std::unordered_set<scalar_t> picked_set;
            while (static_cast<int64_t>(picked_set.size()) < fanout) {
              picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors));
            }
            std::copy(
                picked_set.begin(), picked_set.end(), picked_neighbors_data);
          }
        }));
387
388
389
390
  }
  return picked_neighbors;
}

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
414
 * @param replace Boolean indicating whether the sample is performed with or
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor NonUniformPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  torch::Tensor picked_neighbors;
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::tensor({}, options);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
    picked_neighbors =
        torch::index_select(picked_neighbors, 0, positive_probs_indices);
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
    picked_neighbors =
        torch::multinomial(local_probs, fanout, replace) + offset;
  }
  return picked_neighbors;
}

447
448
template <>
torch::Tensor Pick<SamplerType::NEIGHBOR>(
449
450
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
451
452
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::NEIGHBOR> args) {
453
454
455
456
457
458
459
460
  if (probs_or_mask.has_value()) {
    return NonUniformPick(
        offset, num_neighbors, fanout, replace, options, probs_or_mask);
  } else {
    return UniformPick(offset, num_neighbors, fanout, replace, options);
  }
}

461
template <SamplerType S>
462
463
464
torch::Tensor PickByEtype(
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
465
    const torch::Tensor& type_per_edge,
466
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
467
468
469
470
  std::vector<torch::Tensor> picked_neighbors(
      fanouts.size(), torch::tensor({}, options));
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
471
472
473
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
474
475
476
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
477
          TORCH_CHECK(
478
              etype >= 0 && etype < (int64_t)fanouts.size(),
479
              "Etype values exceed the number of fanouts.");
480
          int64_t fanout = fanouts[etype];
481
482
483
484
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
485
486
          // Do sampling for one etype.
          if (fanout != 0) {
487
            picked_neighbors[etype] = Pick<S>(
488
                etype_begin, etype_end - etype_begin, fanout, replace, options,
489
                probs_or_mask, args);
490
491
492
493
          }
          etype_begin = etype_end;
        }
      }));
494
495
496
497

  return torch::cat(picked_neighbors, 0);
}

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
template <>
torch::Tensor Pick<SamplerType::LABOR>(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
  if (fanout == 0) return torch::tensor({}, options);
  if (probs_or_mask.has_value()) {
    torch::Tensor picked_neighbors;
    AT_DISPATCH_FLOATING_TYPES(
        probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
          if (replace) {
            picked_neighbors = LaborPick<true, true, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          } else {
            picked_neighbors = LaborPick<true, false, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          }
        }));
    return picked_neighbors;
  } else if (replace) {
    return LaborPick<false, true>(
        offset, num_neighbors, fanout, options, probs_or_mask, args);
  } else {  // replace = false
    return LaborPick<false, false>(
        offset, num_neighbors, fanout, options, probs_or_mask, args);
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
 *
 * @return A tensor containing the picked neighbors.
 */
template <bool NonUniform, bool Replace, typename T>
inline torch::Tensor LaborPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
  fanout = fanout < 0 ? num_neighbors : std::min(fanout, num_neighbors);
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
    return torch::arange(offset, offset + num_neighbors, options);
  }
  torch::Tensor heap_tensor = torch::empty({fanout * 2}, torch::kInt32);
  // Assuming max_degree of a vertex is <= 4 billion.
  auto heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
      heap_tensor.data_ptr<int32_t>());
  const T* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<T>() + offset : nullptr;
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
          torch::Tensor remaining =
              torch::ones({num_neighbors}, torch::kFloat32);
          float* rem_data = remaining.data_ptr<float>();
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
                    args.random_seed, t, args.num_nodes, j, rem_data[i],
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, ++heap_end);
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
                  rem_data[i] = -1;
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            for (int64_t j = 0; j < init_count; j++) {
              const auto t = local_indices_data[i];
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            if (rem_data[i] == -1) continue;
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
  torch::Tensor picked_neighbors = torch::empty({fanout}, options);
  AT_DISPATCH_INTEGRAL_TYPES(
      picked_neighbors.scalar_type(), "LaborPickOutput", ([&] {
        scalar_t* picked_neighbors_data = picked_neighbors.data_ptr<scalar_t>();
        for (int64_t i = 0; i < fanout; ++i) {
          const auto [rnd, j] = heap_data[i];
          if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
            picked_neighbors_data[num_sampled++] = offset + j;
          }
        }
      }));
  TORCH_CHECK(
      !Replace || num_sampled == fanout || num_sampled == 0,
      "Sampling with replacement should sample exactly fanout neighbors or 0!");
  return picked_neighbors.narrow(0, 0, num_sampled);
}

700
701
}  // namespace sampling
}  // namespace graphbolt