test_nn.py 41.1 KB
Newer Older
1
import io
2
3
4
5
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
6
import dgl.function as fn
7
import backend as F
8
import pytest
9
10
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
from test_utils import parametrize_dtype
11
from copy import deepcopy
12
import pickle
13

14
15
import scipy as sp

16
17
tmp_buffer = io.BytesIO()

18
19
20
21
22
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

23
24
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv0(out_dim):
25
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
26
    ctx = F.ctx()
27
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
28

29
    conv = nn.GraphConv(5, out_dim, norm='none', bias=True)
30
    conv = conv.to(ctx)
31
    print(conv)
32
33
34
35
36

    # test pickle
    th.save(conv, tmp_buffer)


37
    # test#1: basic
38
    h0 = F.ones((3, 5))
39
    h1 = conv(g, h0)
40
41
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
42
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
43
    # test#2: more-dim
44
    h0 = F.ones((3, 5, 5))
45
    h1 = conv(g, h0)
46
47
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
48
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
49

50
    conv = nn.GraphConv(5, out_dim)
51
    conv = conv.to(ctx)
52
    # test#3: basic
53
    h0 = F.ones((3, 5))
54
    h1 = conv(g, h0)
55
56
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
57
    # test#4: basic
58
    h0 = F.ones((3, 5, 5))
59
    h1 = conv(g, h0)
60
61
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
62

63
    conv = nn.GraphConv(5, out_dim)
64
    conv = conv.to(ctx)
65
    # test#3: basic
66
    h0 = F.ones((3, 5))
67
    h1 = conv(g, h0)
68
69
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
70
    # test#4: basic
71
    h0 = F.ones((3, 5, 5))
72
    h1 = conv(g, h0)
73
74
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
75
76
77
78
79

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
80
    assert not F.allclose(old_weight, new_weight)
81

82
83
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree', 'dglgraph']))
84
@pytest.mark.parametrize('norm', ['none', 'both', 'right', 'left'])
85
86
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
87
88
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv(idtype, g, norm, weight, bias, out_dim):
89
90
    # Test one tensor input
    g = g.astype(idtype).to(F.ctx())
91
92
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
93
94
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
95
96
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
97
        h_out = conv(g, h)
98
    else:
99
        h_out = conv(g, h, weight=ext_w)
100
    assert h_out.shape == (ndst, out_dim)
101

102
103
104
105
106
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
107
108
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight(idtype, g, norm, weight, bias, out_dim):
109
    g = g.astype(idtype).to(F.ctx())
110
111
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
112
113
114
115
116
117
118
119
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    e_w = g.edata['scalar_w']
    if weight:
        h_out = conv(g, h, edge_weight=e_w)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=e_w)
120
    assert h_out.shape == (ndst, out_dim)
121
122
123
124
125
126

@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
127
128
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight_norm(idtype, g, norm, weight, bias, out_dim):
129
    g = g.astype(idtype).to(F.ctx())
130
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
131
132
133
134

    # test pickle
    th.save(conv, tmp_buffer)

135
    ext_w = F.randn((5, out_dim)).to(F.ctx())
136
137
138
139
140
141
142
143
144
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    edgenorm = nn.EdgeWeightNorm(norm=norm)
    norm_weight = edgenorm(g, g.edata['scalar_w'])
    if weight:
        h_out = conv(g, h, edge_weight=norm_weight)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=norm_weight)
145
    assert h_out.shape == (ndst, out_dim)
146

147
148
149
150
151
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
152
153
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_bi(idtype, g, norm, weight, bias, out_dim):
154
155
    # Test a pair of tensor inputs
    g = g.astype(idtype).to(F.ctx())
156
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
157
158
159
160
    
    # test pickle
    th.save(conv, tmp_buffer)

161
    ext_w = F.randn((5, out_dim)).to(F.ctx())
162
163
164
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
165
    h_dst = F.randn((ndst, out_dim)).to(F.ctx())
166
167
168
169
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
170
    assert h_out.shape == (ndst, out_dim)
171

172
173
174
175
176
177
178
179
180
181
182
183
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

184
185
@pytest.mark.parametrize('out_dim', [1, 2])
def test_tagconv(out_dim):
186
    g = dgl.DGLGraph(nx.path_graph(3))
187
    g = g.to(F.ctx())
188
    ctx = F.ctx()
189
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
190
191
    norm = th.pow(g.in_degrees().float(), -0.5)

192
    conv = nn.TAGConv(5, out_dim, bias=True)
193
    conv = conv.to(ctx)
194
    print(conv)
195
196
197
    
    # test pickle
    th.save(conv, tmp_buffer)
198
199
200

    # test#1: basic
    h0 = F.ones((3, 5))
201
    h1 = conv(g, h0)
202
203
204
205
206
207
208
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias))

209
    conv = nn.TAGConv(5, out_dim)
210
    conv = conv.to(ctx)
211

212
213
    # test#2: basic
    h0 = F.ones((3, 5))
214
    h1 = conv(g, h0)
215
    assert h1.shape[-1] == out_dim
216

217
    # test reset_parameters
218
219
220
221
222
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

223
def test_set2set():
224
    ctx = F.ctx()
225
    g = dgl.DGLGraph(nx.path_graph(10))
226
    g = g.to(F.ctx())
227
228

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
229
    s2s = s2s.to(ctx)
230
231
232
    print(s2s)

    # test#1: basic
233
    h0 = F.randn((g.number_of_nodes(), 5))
234
    h1 = s2s(g, h0)
235
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
236
237

    # test#2: batched graph
238
239
    g1 = dgl.DGLGraph(nx.path_graph(11)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
240
    bg = dgl.batch([g, g1, g2])
241
    h0 = F.randn((bg.number_of_nodes(), 5))
242
    h1 = s2s(bg, h0)
243
244
245
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

def test_glob_att_pool():
246
    ctx = F.ctx()
247
    g = dgl.DGLGraph(nx.path_graph(10))
248
    g = g.to(F.ctx())
249
250

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
251
    gap = gap.to(ctx)
252
253
    print(gap)

254
255
256
    # test pickle
    th.save(gap, tmp_buffer)

257
    # test#1: basic
258
    h0 = F.randn((g.number_of_nodes(), 5))
259
    h1 = gap(g, h0)
260
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
261
262
263

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
264
    h0 = F.randn((bg.number_of_nodes(), 5))
265
    h1 = gap(bg, h0)
266
267
268
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

def test_simple_pool():
269
    ctx = F.ctx()
270
    g = dgl.DGLGraph(nx.path_graph(15))
271
    g = g.to(F.ctx())
272
273
274
275
276
277
278
279

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
280
    h0 = F.randn((g.number_of_nodes(), 5))
281
282
283
284
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
285
    h1 = sum_pool(g, h0)
286
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
287
    h1 = avg_pool(g, h0)
288
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
289
    h1 = max_pool(g, h0)
290
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
291
    h1 = sort_pool(g, h0)
292
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
293
294

    # test#2: batched graph
295
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
296
    bg = dgl.batch([g, g_, g, g_, g])
297
    h0 = F.randn((bg.number_of_nodes(), 5))
298
    h1 = sum_pool(bg, h0)
299
300
301
302
303
304
    truth = th.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
305

306
    h1 = avg_pool(bg, h0)
307
308
309
310
311
312
    truth = th.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
313

314
    h1 = max_pool(bg, h0)
315
316
317
318
319
320
    truth = th.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
321

322
    h1 = sort_pool(bg, h0)
323
324
325
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

def test_set_trans():
326
    ctx = F.ctx()
327
328
329
330
331
    g = dgl.DGLGraph(nx.path_graph(15))

    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'sab')
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'isab', 3)
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
332
333
334
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
335
336
337
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
338
    h0 = F.randn((g.number_of_nodes(), 50))
339
    h1 = st_enc_0(g, h0)
340
    assert h1.shape == h0.shape
341
    h1 = st_enc_1(g, h0)
342
    assert h1.shape == h0.shape
343
    h2 = st_dec(g, h1)
344
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
345
346
347
348
349

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
350
    h0 = F.randn((bg.number_of_nodes(), 50))
351
    h1 = st_enc_0(bg, h0)
352
    assert h1.shape == h0.shape
353
    h1 = st_enc_1(bg, h0)
354
355
    assert h1.shape == h0.shape

356
    h2 = st_dec(bg, h1)
357
358
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

359
360
@pytest.mark.parametrize('O', [1, 2, 8])
def test_rgcn(O):
Minjie Wang's avatar
Minjie Wang committed
361
362
363
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
364
    g = g.to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
365
366
367
368
369
370
371
372
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
373
374
375
376

    # test pickle
    th.save(rgc_basis, tmp_buffer)

377
378
379
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
380
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
Minjie Wang's avatar
Minjie Wang committed
381
382
383
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
384
    h_new_low = rgc_basis_low(g, h, r)
Minjie Wang's avatar
Minjie Wang committed
385
    assert list(h_new.shape) == [100, O]
386
387
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
388

389
390
391
392
393
394
395
396
397
398
399
400
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
        rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True).to(ctx)
        rgc_bdd_low.weight = rgc_bdd.weight
        rgc_bdd_low.loop_weight = rgc_bdd.loop_weight
        h = th.randn((100, I)).to(ctx)
        r = th.tensor(etype).to(ctx)
        h_new = rgc_bdd(g, h, r)
        h_new_low = rgc_bdd_low(g, h, r)
        assert list(h_new.shape) == [100, O]
        assert list(h_new_low.shape) == [100, O]
        assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
401
402

    # with norm
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
403
    norm = th.rand((g.number_of_edges(), 1)).to(ctx)
Minjie Wang's avatar
Minjie Wang committed
404
405

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
406
407
408
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
409
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
Minjie Wang's avatar
Minjie Wang committed
410
411
412
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r, norm)
413
    h_new_low = rgc_basis_low(g, h, r, norm)
Minjie Wang's avatar
Minjie Wang committed
414
    assert list(h_new.shape) == [100, O]
415
416
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
417

418
419
420
421
422
423
424
425
426
427
428
429
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
        rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True).to(ctx)
        rgc_bdd_low.weight = rgc_bdd.weight
        rgc_bdd_low.loop_weight = rgc_bdd.loop_weight
        h = th.randn((100, I)).to(ctx)
        r = th.tensor(etype).to(ctx)
        h_new = rgc_bdd(g, h, r, norm)
        h_new_low = rgc_bdd_low(g, h, r, norm)
        assert list(h_new.shape) == [100, O]
        assert list(h_new_low.shape) == [100, O]
        assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
430
431
432

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
433
434
435
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
436
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
Minjie Wang's avatar
Minjie Wang committed
437
438
439
    h = th.randint(0, I, (100,)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
440
    h_new_low = rgc_basis_low(g, h, r)
Minjie Wang's avatar
Minjie Wang committed
441
    assert list(h_new.shape) == [100, O]
442
443
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
444

445

446
447
@pytest.mark.parametrize('O', [1, 2, 8])
def test_rgcn_sorted(O):
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    g = g.to(F.ctx())
    # 5 etypes
    R = 5
    etype = [200, 200, 200, 200, 200]
    B = 2
    I = 10

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
    h = th.randn((100, I)).to(ctx)
    r = etype
    h_new = rgc_basis(g, h, r)
    h_new_low = rgc_basis_low(g, h, r)
    assert list(h_new.shape) == [100, O]
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)

471
472
473
474
475
476
477
478
479
480
481
482
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
        rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True).to(ctx)
        rgc_bdd_low.weight = rgc_bdd.weight
        rgc_bdd_low.loop_weight = rgc_bdd.loop_weight
        h = th.randn((100, I)).to(ctx)
        r = etype
        h_new = rgc_bdd(g, h, r)
        h_new_low = rgc_bdd_low(g, h, r)
        assert list(h_new.shape) == [100, O]
        assert list(h_new_low.shape) == [100, O]
        assert F.allclose(h_new, h_new_low)
483
484

    # with norm
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
485
    norm = th.rand((g.number_of_edges(), 1)).to(ctx)
486
487
488
489
490
491
492
493
494
495
496
497
498
499

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
    h = th.randn((100, I)).to(ctx)
    r = etype
    h_new = rgc_basis(g, h, r, norm)
    h_new_low = rgc_basis_low(g, h, r, norm)
    assert list(h_new.shape) == [100, O]
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)

500
501
502
503
504
505
506
507
508
509
510
511
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
        rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True).to(ctx)
        rgc_bdd_low.weight = rgc_bdd.weight
        rgc_bdd_low.loop_weight = rgc_bdd.loop_weight
        h = th.randn((100, I)).to(ctx)
        r = etype
        h_new = rgc_bdd(g, h, r, norm)
        h_new_low = rgc_bdd_low(g, h, r, norm)
        assert list(h_new.shape) == [100, O]
        assert list(h_new_low.shape) == [100, O]
        assert F.allclose(h_new, h_new_low)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
    rgc_basis_low.loop_weight = rgc_basis.loop_weight
    h = th.randint(0, I, (100,)).to(ctx)
    r = etype
    h_new = rgc_basis(g, h, r)
    h_new_low = rgc_basis_low(g, h, r)
    assert list(h_new.shape) == [100, O]
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)


528
@parametrize_dtype
529
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
530
@pytest.mark.parametrize('out_dim', [1, 5])
531
532
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv(g, idtype, out_dim, num_heads):
533
    g = g.astype(idtype).to(F.ctx())
534
    ctx = F.ctx()
535
    gat = nn.GATConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
536
    feat = F.randn((g.number_of_src_nodes(), 5))
537
    gat = gat.to(ctx)
538
    h = gat(g, feat)
539
540
541
542

    # test pickle
    th.save(gat, tmp_buffer)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
543
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
544
    _, a = gat(g, feat, get_attention=True)
545
    assert a.shape == (g.number_of_edges(), num_heads, 1)
546

547
548
549
550
551
    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

552
@parametrize_dtype
553
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
554
555
556
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv_bi(g, idtype, out_dim, num_heads):
557
558
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
559
    gat = nn.GATConv(5, out_dim, num_heads)
560
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
561
562
    gat = gat.to(ctx)
    h = gat(g, feat)
563
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
564
    _, a = gat(g, feat, get_attention=True)
565
    assert a.shape == (g.number_of_edges(), num_heads, 1)
566

Shaked Brody's avatar
Shaked Brody committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = F.randn((g.number_of_src_nodes(), 5))
    gat = gat.to(ctx)
    h = gat(g, feat)

    # test pickle
    th.save(gat, tmp_buffer)

    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv_bi(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    gat = gat.to(ctx)
    h = gat(g, feat)
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_node_feats', [1, 5])
@pytest.mark.parametrize('out_edge_feats', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_egat_conv(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx() 
    egat = nn.EGATConv(in_node_feats=10,
                       in_edge_feats=5,
                       out_node_feats=out_node_feats,
                       out_edge_feats=out_edge_feats,
                       num_heads=num_heads)
    nfeat = F.randn((g.number_of_nodes(), 10))
    efeat = F.randn((g.number_of_edges(), 5))
    
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
    h, f, attn = egat(g, nfeat, efeat, True)

    th.save(egat, tmp_buffer)    

628
@parametrize_dtype
629
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
630
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
631
632
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
633
    sage = nn.SAGEConv(5, 10, aggre_type)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
634
    feat = F.randn((g.number_of_src_nodes(), 5))
635
    sage = sage.to(F.ctx())
636
637
    # test pickle
    th.save(sage, tmp_buffer)
638
639
640
    h = sage(g, feat)
    assert h.shape[-1] == 10

641
@parametrize_dtype
642
@pytest.mark.parametrize('g', get_cases(['bipartite']))
643
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
644
645
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv_bi(idtype, g, aggre_type, out_dim):
646
    g = g.astype(idtype).to(F.ctx())
647
    dst_dim = 5 if aggre_type != 'gcn' else 10
648
    sage = nn.SAGEConv((10, dst_dim), out_dim, aggre_type)
649
650
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
    sage = sage.to(F.ctx())
651
    h = sage(g, feat)
652
    assert h.shape[-1] == out_dim
653
    assert h.shape[0] == g.number_of_dst_nodes()
654

655
@parametrize_dtype
656
657
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv2(idtype, out_dim):
658
    # TODO: add test for blocks
Mufei Li's avatar
Mufei Li committed
659
    # Test the case for graphs without edges
660
    g = dgl.heterograph({('_U', '_E', '_V'): ([], [])}, {'_U': 5, '_V': 3})
661
662
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
663
    sage = nn.SAGEConv((3, 3), out_dim, 'gcn')
Mufei Li's avatar
Mufei Li committed
664
665
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage = sage.to(ctx)
666
    h = sage(g, (F.copy_to(feat[0], F.ctx()), F.copy_to(feat[1], F.ctx())))
667
    assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
668
669
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
670
        sage = nn.SAGEConv((3, 1), out_dim, aggre_type)
Mufei Li's avatar
Mufei Li committed
671
672
673
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage = sage.to(ctx)
        h = sage(g, feat)
674
        assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
675
676
        assert h.shape[0] == 3

677
678
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
679
680
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sgc_conv(g, idtype, out_dim):
681
    ctx = F.ctx()
682
    g = g.astype(idtype).to(ctx)
683
    # not cached
684
    sgc = nn.SGConv(5, out_dim, 3)
685
686
687
688

    # test pickle
    th.save(sgc, tmp_buffer)

689
    feat = F.randn((g.number_of_nodes(), 5))
690
    sgc = sgc.to(ctx)
691

692
    h = sgc(g, feat)
693
    assert h.shape[-1] == out_dim
694
695

    # cached
696
    sgc = nn.SGConv(5, out_dim, 3, True)
697
    sgc = sgc.to(ctx)
698
699
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
700
    assert F.allclose(h_0, h_1)
701
    assert h_0.shape[-1] == out_dim
702

703
704
705
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv(g, idtype):
706
    ctx = F.ctx()
707
    g = g.astype(idtype).to(ctx)
708
    appnp = nn.APPNPConv(10, 0.1)
709
    feat = F.randn((g.number_of_nodes(), 5))
710
    appnp = appnp.to(ctx)
711
712
713
    
    # test pickle
    th.save(appnp, tmp_buffer)
714

715
    h = appnp(g, feat)
716
717
    assert h.shape[-1] == 5

718
@parametrize_dtype
719
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
720
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
721
722
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
723
724
725
726
727
    ctx = F.ctx()
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
728
    feat = F.randn((g.number_of_src_nodes(), 5))
729
730
    gin = gin.to(ctx)
    h = gin(g, feat)
731
732
733
734

    # test pickle
    th.save(h, tmp_buffer)
    
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
735
    assert h.shape == (g.number_of_dst_nodes(), 12)
736

737
@parametrize_dtype
738
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
739
740
741
742
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
743
744
745
746
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
747
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
748
749
    gin = gin.to(ctx)
    h = gin(g, feat)
750
    assert h.shape == (g.number_of_dst_nodes(), 12)
751

752
@parametrize_dtype
753
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
754
755
def test_agnn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
756
757
    ctx = F.ctx()
    agnn = nn.AGNNConv(1)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
758
    feat = F.randn((g.number_of_src_nodes(), 5))
759
    agnn = agnn.to(ctx)
760
    h = agnn(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
761
    assert h.shape == (g.number_of_dst_nodes(), 5)
762

763
@parametrize_dtype
764
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
765
766
767
def test_agnn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
768
    agnn = nn.AGNNConv(1)
769
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
770
771
    agnn = agnn.to(ctx)
    h = agnn(g, feat)
772
    assert h.shape == (g.number_of_dst_nodes(), 5)
773

774
775
776
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv(g, idtype):
777
    ctx = F.ctx()
778
    g = g.astype(idtype).to(ctx)
779
780
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
    etypes = th.arange(g.number_of_edges()) % 3
781
    feat = F.randn((g.number_of_nodes(), 5))
782
783
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
784

785
    h = ggconv(g, feat, etypes)
786
787
788
    # current we only do shape check
    assert h.shape[-1] == 10

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv_one_etype(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    ggconv = nn.GatedGraphConv(5, 10, 5, 1)
    etypes = th.zeros(g.number_of_edges())
    feat = F.randn((g.number_of_nodes(), 5))
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)

    h = ggconv(g, feat, etypes)
    h2 = ggconv(g, feat)
    # current we only do shape check
    assert F.allclose(h, h2)
    assert h.shape[-1] == 10

806
@parametrize_dtype
807
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
808
809
def test_nn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
810
811
812
    ctx = F.ctx()
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
813
    feat = F.randn((g.number_of_src_nodes(), 5))
814
815
816
817
818
819
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

820
@parametrize_dtype
821
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
822
823
824
def test_nn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
825
826
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv((5, 2), 10, edge_func, 'mean')
827
828
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
829
830
831
832
833
834
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

835
@parametrize_dtype
836
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
837
838
def test_gmm_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
839
840
    ctx = F.ctx()
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
841
    feat = F.randn((g.number_of_nodes(), 5))
842
    pseudo = F.randn((g.number_of_edges(), 3))
843
    gmmconv = gmmconv.to(ctx)
844
    h = gmmconv(g, feat, pseudo)
845
846
847
    # currently we only do shape check
    assert h.shape[-1] == 10

848
@parametrize_dtype
849
@pytest.mark.parametrize('g', get_cases(['bipartite', 'block-bipartite'], exclude=['zero-degree']))
850
851
852
def test_gmm_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
853
    gmmconv = nn.GMMConv((5, 2), 10, 3, 4, 'mean')
854
855
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
856
857
858
859
860
861
    pseudo = F.randn((g.number_of_edges(), 3))
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, (feat, feat_dst), pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

862
@parametrize_dtype
863
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
864
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
865
866
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_graph_conv(norm_type, g, idtype, out_dim):
867
    g = g.astype(idtype).to(F.ctx())
868
    ctx = F.ctx()
869
    # TODO(minjie): enable the following option after #1385
870
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
871
872
    conv = nn.GraphConv(5, out_dim, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, out_dim, norm=norm_type, bias=True)
873
874
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
875
    feat = F.randn((g.number_of_src_nodes(), 5))
876
877
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
878
879
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
880
881
    assert F.allclose(out_conv, out_dense_conv)

882
@parametrize_dtype
883
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite']))
884
885
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_sage_conv(g, idtype, out_dim):
886
    g = g.astype(idtype).to(F.ctx())
887
    ctx = F.ctx()
888
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
889
890
    sage = nn.SAGEConv(5, out_dim, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, out_dim)
891
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
892
    dense_sage.fc.bias.data = sage.bias.data
893
894
895
896
897
898
899
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
900
901
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
902
903
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
904
905
    assert F.allclose(out_sage, out_dense_sage), g

906
@parametrize_dtype
907
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
908
909
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv(g, idtype, out_dim):
910
    g = g.astype(idtype).to(F.ctx())
911
    ctx = F.ctx()
912
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
913
    print(edge_conv)
914
915
916
917

    # test pickle
    th.save(edge_conv, tmp_buffer)
    
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
918
    h0 = F.randn((g.number_of_src_nodes(), 5))
919
    h1 = edge_conv(g, h0)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
920
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
921

922
@parametrize_dtype
923
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
924
925
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv_bi(g, idtype, out_dim):
926
927
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
928
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
929
    print(edge_conv)
930
    h0 = F.randn((g.number_of_src_nodes(), 5))
931
932
    x0 = F.randn((g.number_of_dst_nodes(), 5))
    h1 = edge_conv(g, (h0, x0))
933
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
934
935
936
    
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
937
938
939
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv(g, idtype, out_dim, num_heads):
940
941
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
942
    dotgat = nn.DotGatConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
943
    feat = F.randn((g.number_of_src_nodes(), 5))
944
    dotgat = dotgat.to(ctx)
945
946
947
948
    
    # test pickle
    th.save(dotgat, tmp_buffer)
    
949
    h = dotgat(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
950
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
951
    _, a = dotgat(g, feat, get_attention=True)
952
    assert a.shape == (g.number_of_edges(), num_heads, 1)
953
954
955

@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
956
957
958
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv_bi(g, idtype, out_dim, num_heads):
959
960
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
961
    dotgat = nn.DotGatConv((5, 5), out_dim, num_heads)
962
963
964
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    dotgat = dotgat.to(ctx)
    h = dotgat(g, feat)
965
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
966
    _, a = dotgat(g, feat, get_attention=True)
967
    assert a.shape == (g.number_of_edges(), num_heads, 1)
968

969
970
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_cheb_conv(out_dim):
971
972
973
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
974
        g = g.to(F.ctx())
975
        adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
976
977
        cheb = nn.ChebConv(5, out_dim, k, None)
        dense_cheb = nn.DenseChebConv(5, out_dim, k)
Axel Nilsson's avatar
Axel Nilsson committed
978
979
        #for i in range(len(cheb.fc)):
        #    dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
980
        dense_cheb.W.data = cheb.linear.weight.data.transpose(-1, -2).view(k, 5, out_dim)
Axel Nilsson's avatar
Axel Nilsson committed
981
982
        if cheb.linear.bias is not None:
            dense_cheb.bias.data = cheb.linear.bias.data
983
        feat = F.randn((100, 5))
984
985
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
986
987
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
Axel Nilsson's avatar
Axel Nilsson committed
988
        print(k, out_cheb, out_dense_cheb)
989
990
        assert F.allclose(out_cheb, out_dense_cheb)

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
def test_sequential():
    ctx = F.ctx()
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
1010
    g = g.to(F.ctx())
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1)

1031
1032
1033
    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2)).to(F.ctx())
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8)).to(F.ctx())
1034
1035
1036
1037
1038
1039
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

1040
1041
1042
1043
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_atomic_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
1044
1045
1046
1047
1048
1049
1050
1051
1052
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

1053
    feat = F.randn((g.number_of_nodes(), 1))
1054
1055
1056
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
1057

1058
1059
1060
    # current we only do shape check
    assert h.shape[-1] == 4

1061
@parametrize_dtype
1062
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
1063
1064
@pytest.mark.parametrize('out_dim', [1, 3])
def test_cf_conv(g, idtype, out_dim):
1065
    g = g.astype(idtype).to(F.ctx())
1066
1067
1068
    cfconv = nn.CFConv(node_in_feats=2,
                       edge_in_feats=3,
                       hidden_feats=2,
1069
                       out_feats=out_dim)
1070
1071
1072
1073
1074

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

1075
    src_feats = F.randn((g.number_of_src_nodes(), 2))
1076
    edge_feats = F.randn((g.number_of_edges(), 3))
1077
1078
1079
1080
1081
1082
1083
    h = cfconv(g, src_feats, edge_feats)
    # current we only do shape check
    assert h.shape[-1] == out_dim

    # case for bipartite graphs
    dst_feats = F.randn((g.number_of_dst_nodes(), 3))
    h = cfconv(g, (src_feats, dst_feats), edge_feats)
1084
    # current we only do shape check
1085
    assert h.shape[-1] == out_dim
1086

1087
1088
1089
1090
1091
1092
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

1093
@parametrize_dtype
1094
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
1095
def test_hetero_conv(agg, idtype):
1096
    g = dgl.heterograph({
1097
1098
1099
        ('user', 'follows', 'user'): ([0, 0, 2, 1], [1, 2, 1, 3]),
        ('user', 'plays', 'game'): ([0, 0, 0, 1, 2], [0, 2, 3, 0, 2]),
        ('store', 'sells', 'game'): ([0, 0, 1, 1], [0, 3, 1, 2])},
1100
        idtype=idtype, device=F.ctx())
1101
    conv = nn.HeteroGraphConv({
1102
1103
1104
        'follows': nn.GraphConv(2, 3, allow_zero_in_degree=True),
        'plays': nn.GraphConv(2, 4, allow_zero_in_degree=True),
        'sells': nn.GraphConv(3, 4, allow_zero_in_degree=True)},
1105
        agg)
1106
    conv = conv.to(F.ctx())
1107
1108
1109
1110

    # test pickle
    th.save(conv, tmp_buffer)

1111
1112
1113
1114
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))

1115
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
1116
1117
1118
1119
1120
1121
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1122
        assert h['game'].shape == (4, 2, 4)
1123

1124
1125
    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf}, {'user': uf, 'game': gf, 'store': sf[0:0]}))
1126
1127
1128
1129
1130
1131
1132
1133
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

1134
    h = conv(block, {'user': uf, 'game': gf, 'store': sf})
1135
1136
1137
1138
1139
1140
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1141
        assert h['game'].shape == (4, 2, 4)
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
1165
    conv = conv.to(F.ctx())
1166
1167
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
1168
    h = conv(g, {'user' : uf, 'game': gf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
1169
1170
1171
1172
1173
1174
1175
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    #conv on graph without any edges
    for etype in g.etypes:
        g = dgl.remove_edges(g, g.edges(form='eid', etype=etype), etype=etype)
    assert g.num_edges() == 0
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}

    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [
                         0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf},
             {'user': uf, 'game': gf, 'store': sf[0:0]}))
    assert set(h.keys()) == {'user', 'game'}

1189
1190
if __name__ == '__main__':
    test_graph_conv()
1191
1192
    test_graph_conv_e_weight()
    test_graph_conv_e_weight_norm()
1193
1194
1195
1196
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    test_set_trans()
Minjie Wang's avatar
Minjie Wang committed
1197
    test_rgcn()
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
1198
    test_rgcn_sorted()
1199
1200
    test_tagconv()
    test_gat_conv()
Shaked Brody's avatar
Shaked Brody committed
1201
    test_gatv2_conv()
1202
    test_egat_conv()
1203
1204
1205
1206
1207
1208
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    test_agnn_conv()
    test_gated_graph_conv()
1209
    test_gated_graph_conv_one_etype()
1210
1211
    test_nn_conv()
    test_gmm_conv()
1212
    test_dotgat_conv()
1213
1214
1215
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_dense_cheb_conv()
1216
    test_sequential()
1217
    test_atomic_conv()
1218
    test_cf_conv()
1219
    test_hetero_conv()