test_nn.py 27.2 KB
Newer Older
1
2
3
4
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
5
import dgl.function as fn
6
import backend as F
7
import pytest
8
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
9
10
from copy import deepcopy

11
12
13
import numpy as np
import scipy as sp

14
15
16
17
18
19
20
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
21
22
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
23

24
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
25
    conv = conv.to(ctx)
26
27
    print(conv)
    # test#1: basic
28
    h0 = F.ones((3, 5))
29
    h1 = conv(g, h0)
30
31
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
32
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
33
    # test#2: more-dim
34
    h0 = F.ones((3, 5, 5))
35
    h1 = conv(g, h0)
36
37
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
38
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
39
40

    conv = nn.GraphConv(5, 2)
41
    conv = conv.to(ctx)
42
    # test#3: basic
43
    h0 = F.ones((3, 5))
44
    h1 = conv(g, h0)
45
46
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
47
    # test#4: basic
48
    h0 = F.ones((3, 5, 5))
49
    h1 = conv(g, h0)
50
51
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
52
53

    conv = nn.GraphConv(5, 2)
54
    conv = conv.to(ctx)
55
    # test#3: basic
56
    h0 = F.ones((3, 5))
57
    h1 = conv(g, h0)
58
59
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
60
    # test#4: basic
61
    h0 = F.ones((3, 5, 5))
62
    h1 = conv(g, h0)
63
64
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
65
66
67
68
69

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
70
    assert not F.allclose(old_weight, new_weight)
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
@pytest.mark.parametrize('g', get_cases(['path', 'bipartite', 'small'], exclude=['zero-degree']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, 2)).to(F.ctx())
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
        h = conv(g, h)
    else:
        h = conv(g, h, weight=ext_w)
    assert h.shape == (ndst, 2)

88
89
90
91
92
93
94
95
96
97
98
99
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

100
def test_tagconv():
101
102
103
104
105
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = th.pow(g.in_degrees().float(), -0.5)

106
    conv = nn.TAGConv(5, 2, bias=True)
107
    conv = conv.to(ctx)
108
109
110
111
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
112
    h1 = conv(g, h0)
113
114
115
116
117
118
119
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias))

120
    conv = nn.TAGConv(5, 2)
121
    conv = conv.to(ctx)
122

123
124
    # test#2: basic
    h0 = F.ones((3, 5))
125
    h1 = conv(g, h0)
126
    assert h1.shape[-1] == 2
127

128
    # test reset_parameters
129
130
131
132
133
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

134
def test_set2set():
135
    ctx = F.ctx()
136
137
138
    g = dgl.DGLGraph(nx.path_graph(10))

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
139
    s2s = s2s.to(ctx)
140
141
142
    print(s2s)

    # test#1: basic
143
    h0 = F.randn((g.number_of_nodes(), 5))
144
    h1 = s2s(g, h0)
145
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
146
147
148
149
150

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(11))
    g2 = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g1, g2])
151
    h0 = F.randn((bg.number_of_nodes(), 5))
152
    h1 = s2s(bg, h0)
153
154
155
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

def test_glob_att_pool():
156
    ctx = F.ctx()
157
158
159
    g = dgl.DGLGraph(nx.path_graph(10))

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
160
    gap = gap.to(ctx)
161
162
163
    print(gap)

    # test#1: basic
164
    h0 = F.randn((g.number_of_nodes(), 5))
165
    h1 = gap(g, h0)
166
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
167
168
169

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
170
    h0 = F.randn((bg.number_of_nodes(), 5))
171
    h1 = gap(bg, h0)
172
173
174
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

def test_simple_pool():
175
    ctx = F.ctx()
176
177
178
179
180
181
182
183
184
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
185
    h0 = F.randn((g.number_of_nodes(), 5))
186
187
188
189
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
190
    h1 = sum_pool(g, h0)
191
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
192
    h1 = avg_pool(g, h0)
193
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
194
    h1 = max_pool(g, h0)
195
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
196
    h1 = sort_pool(g, h0)
197
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
198
199
200
201

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
202
    h0 = F.randn((bg.number_of_nodes(), 5))
203
    h1 = sum_pool(bg, h0)
204
205
206
207
208
209
    truth = th.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
210

211
    h1 = avg_pool(bg, h0)
212
213
214
215
216
217
    truth = th.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
218

219
    h1 = max_pool(bg, h0)
220
221
222
223
224
225
    truth = th.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
226

227
    h1 = sort_pool(bg, h0)
228
229
230
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

def test_set_trans():
231
    ctx = F.ctx()
232
233
234
235
236
    g = dgl.DGLGraph(nx.path_graph(15))

    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'sab')
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'isab', 3)
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
237
238
239
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
240
241
242
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
243
    h0 = F.randn((g.number_of_nodes(), 50))
244
    h1 = st_enc_0(g, h0)
245
    assert h1.shape == h0.shape
246
    h1 = st_enc_1(g, h0)
247
    assert h1.shape == h0.shape
248
    h2 = st_dec(g, h1)
249
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
250
251
252
253
254

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
255
    h0 = F.randn((bg.number_of_nodes(), 50))
256
    h1 = st_enc_0(bg, h0)
257
    assert h1.shape == h0.shape
258
    h1 = st_enc_1(bg, h0)
259
260
    assert h1.shape == h0.shape

261
    h2 = st_dec(bg, h1)
262
263
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

264
265
266
267
268
269
def uniform_attention(g, shape):
    a = th.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).view(target_shape).float()

def test_edge_softmax():
270
271
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
272
    edata = F.ones((g.number_of_edges(), 1))
273
    a = nn.edge_softmax(g, edata)
274
275
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
276
    assert F.allclose(a, uniform_attention(g, a.shape))
277

278
    # Test higher dimension case
279
    edata = F.ones((g.number_of_edges(), 3, 1))
280
    a = nn.edge_softmax(g, edata)
281
282
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
283
    assert F.allclose(a, uniform_attention(g, a.shape))
284

285
286
287
288
289
290
291
292
    # Test both forward and backward with PyTorch built-in softmax.
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

293
    score = F.randn((900, 1))
294
    score.requires_grad_()
295
296
    grad = F.randn((900, 1))
    y = F.softmax(score.view(30, 30), dim=0).view(-1, 1)
297
298
299
300
    y.backward(grad)
    grad_score = score.grad
    score.grad.zero_()
    y_dgl = nn.edge_softmax(g, score)
301
302
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
303
    # check forward
304
    assert F.allclose(y_dgl, y)
305
306
    y_dgl.backward(grad)
    # checkout gradient
307
    assert F.allclose(score.grad, grad_score)
308
309
310
    print(score.grad[:10], grad_score[:10])
    
    # Test 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def generate_rand_graph(n, m=None, ctor=dgl.DGLGraph):
        if m is None:
            m = n
        arr = (sp.sparse.random(m, n, density=0.1, format='coo') != 0).astype(np.int64)
        return ctor(arr, readonly=True)

    for g in [generate_rand_graph(50),
              generate_rand_graph(50, ctor=dgl.graph),
              generate_rand_graph(100, 50, ctor=dgl.bipartite)]:
        a1 = F.randn((g.number_of_edges(), 1)).requires_grad_()
        a2 = a1.clone().detach().requires_grad_()
        g.edata['s'] = a1
        g.group_apply_edges('dst', lambda edges: {'ss':F.softmax(edges.data['s'], 1)})
        g.edata['ss'].sum().backward()
        
        builtin_sm = nn.edge_softmax(g, a2)
        builtin_sm.sum().backward()
        print(a1.grad - a2.grad)
        assert len(g.srcdata) == 0
        assert len(g.dstdata) == 0
        assert len(g.edata) == 2
        assert F.allclose(a1.grad, a2.grad, rtol=1e-4, atol=1e-4) # Follow tolerance in unittest backend
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.requires_grad_()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    y_1 = nn.edge_softmax(g, score, eids)
    y_1.backward(grad)
    grad_1 = score.grad
    score.grad.zero_()
    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    y_2 = nn.edge_softmax(subg, score)
    y_2.backward(grad)
    grad_2 = score.grad
    score.grad.zero_()

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

Minjie Wang's avatar
Minjie Wang committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = th.zeros((g.number_of_edges(), 1)).to(ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randint(0, I, (100,)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]
408

409
410
411
412
413
def test_gat_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gat = nn.GATConv(5, 2, 4)
    feat = F.randn((100, 5))
414
    gat = gat.to(ctx)
415
    h = gat(g, feat)
416
    assert h.shape == (100, 4, 2)
417

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gat = nn.GATConv((5, 10), 2, 4)
    feat = (F.randn((100, 5)), F.randn((200, 10)))
    gat = gat.to(ctx)
    h = gat(g, feat)
    assert h.shape == (200, 4, 2)

@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
def test_sage_conv(aggre_type):
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage = sage.to(ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    sage = nn.SAGEConv(5, 10, aggre_type)
    feat = F.randn((100, 5))
    sage = sage.to(ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
    feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
    sage = sage.to(ctx)
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 200
450

451
452
453
454
455
456
def test_sgc_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))
457
    sgc = sgc.to(ctx)
458

459
    h = sgc(g, feat)
460
461
462
463
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
464
    sgc = sgc.to(ctx)
465
466
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
467
468
469
470
471
472
473
474
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

def test_appnp_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((100, 5))
475
    appnp = appnp.to(ctx)
476

477
    h = appnp(g, feat)
478
479
    assert h.shape[-1] == 5

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv(aggregator_type):
    ctx = F.ctx()
    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
    feat = F.randn((100, 5))
    gin = gin.to(ctx)
    h = gin(g, feat)
    assert h.shape == (100, 12)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    gin = gin.to(ctx)
    h = gin(g, feat)
    assert h.shape == (200, 12)
502
503
504

def test_agnn_conv():
    ctx = F.ctx()
505
    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
506
507
    agnn = nn.AGNNConv(1)
    feat = F.randn((100, 5))
508
    agnn = agnn.to(ctx)
509
    h = agnn(g, feat)
510
511
512
513
514
515
516
517
    assert h.shape == (100, 5)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    agnn = nn.AGNNConv(1)
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    agnn = agnn.to(ctx)
    h = agnn(g, feat)
    assert h.shape == (200, 5)
518
519
520
521
522
523
524

def test_gated_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
    etypes = th.arange(g.number_of_edges()) % 3
    feat = F.randn((100, 5))
525
526
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
527

528
    h = ggconv(g, feat, etypes)
529
530
531
532
533
534
535
536
537
538
    # current we only do shape check
    assert h.shape[-1] == 10

def test_nn_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
    feat = F.randn((100, 5))
    efeat = F.randn((g.number_of_edges(), 4))
539
    nnconv = nnconv.to(ctx)
540
    h = nnconv(g, feat, efeat)
541
542
543
    # currently we only do shape check
    assert h.shape[-1] == 10

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
    feat = F.randn((100, 5))
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(50, 100, density=0.1))
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv((5, 2), 10, edge_func, 'mean')
    feat = F.randn((50, 5))
    feat_dst = F.randn((100, 2))
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

565
566
567
568
569
570
def test_gmm_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
    feat = F.randn((100, 5))
    pseudo = F.randn((g.number_of_edges(), 3))
571
    gmmconv = gmmconv.to(ctx)
572
    h = gmmconv(g, feat, pseudo)
573
574
575
    # currently we only do shape check
    assert h.shape[-1] == 10

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    g = dgl.graph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
    feat = F.randn((100, 5))
    pseudo = F.randn((g.number_of_edges(), 3))
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, feat, pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

    g = dgl.bipartite(sp.sparse.random(100, 50, density=0.1), readonly=True)
    gmmconv = nn.GMMConv((5, 2), 10, 3, 4, 'mean')
    feat = F.randn((100, 5))
    feat_dst = F.randn((50, 2))
    pseudo = F.randn((g.number_of_edges(), 3))
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, (feat, feat_dst), pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_graph_conv(norm_type, g):
598
    ctx = F.ctx()
599
    # TODO(minjie): enable the following option after #1385
600
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
601
602
    conv = nn.GraphConv(5, 2, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=norm_type, bias=True)
603
604
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
605
    feat = F.randn((g.number_of_src_nodes(), 5))
606
607
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
608
609
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
610
611
    assert F.allclose(out_conv, out_dense_conv)

612
613
@pytest.mark.parametrize('g', [random_graph(100), random_bipartite(100, 200)])
def test_dense_sage_conv(g):
614
615
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
616
    sage = nn.SAGEConv(5, 2, 'gcn')
617
618
619
    dense_sage = nn.DenseSAGEConv(5, 2)
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
    dense_sage.fc.bias.data = sage.fc_neigh.bias.data
620
621
622
623
624
625
626
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
627
628
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
629
630
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    assert F.allclose(out_sage, out_dense_sage), g

@pytest.mark.parametrize('g', [random_dglgraph(20), random_graph(20), random_bipartite(20, 10)])
def test_edge_conv(g):
    ctx = F.ctx()

    edge_conv = nn.EdgeConv(5, 2).to(ctx)
    print(edge_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_src_nodes(), 5))
    if not g.is_homograph():
        # bipartite
        h1 = edge_conv(g, (h0, h0[:10]))
    else:
        h1 = edge_conv(g, h0)
    assert h1.shape == (g.number_of_dst_nodes(), 2)
648
649
650
651
652
653
654
655
656
657
658
659
660

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).to_dense()
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        for i in range(len(cheb.fc)):
            dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
        if cheb.bias is not None:
            dense_cheb.bias.data = cheb.bias.data
        feat = F.randn((100, 5))
661
662
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
663
664
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
665
666
        assert F.allclose(out_cheb, out_dense_cheb)

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
def test_sequential():
    ctx = F.ctx()
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1)

    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05))
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2))
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8))
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
def test_atomic_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

    feat = F.randn((100, 1))
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
    # current we only do shape check
    assert h.shape[-1] == 4

def test_cf_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    cfconv = nn.CFConv(node_in_feats=2,
                       edge_in_feats=3,
                       hidden_feats=2,
                       out_feats=3)

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

    node_feats = F.randn((100, 2))
    edge_feats = F.randn((g.number_of_edges(), 3))
    h = cfconv(g, node_feats, edge_feats)
    # current we only do shape check
    assert h.shape[-1] == 3    

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
def test_hetero_conv(agg):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]})
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    if F.gpu_ctx():
        conv = conv.to(F.ctx())
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)
    if F.gpu_ctx():
        conv = conv.to(F.ctx())

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    if F.gpu_ctx():
        conv = conv.to(F.ctx())
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

860
861
862
if __name__ == '__main__':
    test_graph_conv()
    test_edge_softmax()
863
    test_partial_edge_softmax()
864
865
866
867
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    test_set_trans()
Minjie Wang's avatar
Minjie Wang committed
868
    test_rgcn()
869
870
871
872
873
874
875
876
877
878
879
880
881
    test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    test_agnn_conv()
    test_gated_graph_conv()
    test_nn_conv()
    test_gmm_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_dense_cheb_conv()
882
    test_sequential()
883
884
    test_atomic_conv()
    test_cf_conv()