main.py 5.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
"""
Inductive Representation Learning on Large Graphs
Paper: http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
Code: https://github.com/williamleif/graphsage-simple
Simple reference implementation of GraphSAGE.
"""
import argparse
import time
import numpy as np
import networkx as nx
import mxnet as mx
from mxnet import nd, gluon
from mxnet.gluon import nn
14
15
16
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from dgl.nn.mxnet.conv import SAGEConv


class GraphSAGE(nn.Block):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 aggregator_type):
        super(GraphSAGE, self).__init__()
        self.g = g

        with self.name_scope():
            self.layers = nn.Sequential()
            # input layer
            self.layers.add(SAGEConv(in_feats, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
            # hidden layers
            for i in range(n_layers - 1):
                self.layers.add(SAGEConv(n_hidden, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
            # output layer
            self.layers.add(SAGEConv(n_hidden, n_classes, aggregator_type, feat_drop=dropout, activation=None)) # activation None

    def forward(self, features):
        h = features
        for layer in self.layers:
            h = layer(self.g, h)
        return h

def evaluate(model, features, labels, mask):
    pred = model(features).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()

def main(args):
    # load and preprocess dataset
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))

    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.to(ctx)
73

74
75
76
77
78
    features = g.ndata['feat']
    labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().asscalar(),
           val_mask.sum().asscalar(),
           test_mask.sum().asscalar()))

93
94
95
    # add self loop
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    n_edges = g.number_of_edges()

    # create GraphSAGE model
    model = GraphSAGE(g,
                      in_feats,
                      args.n_hidden,
                      n_classes,
                      args.n_layers,
                      nd.relu,
                      args.dropout,
                      args.aggregator_type
                      )

    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})


    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GraphSAGE')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    parser.add_argument("--aggregator-type", type=str, default="gcn",
                        help="Aggregator type: mean/gcn/pool/lstm")
    args = parser.parse_args()
    print(args)

    main(args)