main.py 5.43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
Inductive Representation Learning on Large Graphs
Paper: http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
Code: https://github.com/williamleif/graphsage-simple
Simple reference implementation of GraphSAGE.
"""
import argparse
import time
import numpy as np
import networkx as nx
import mxnet as mx
from mxnet import nd, gluon
from mxnet.gluon import nn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.nn.mxnet.conv import SAGEConv


class GraphSAGE(nn.Block):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 aggregator_type):
        super(GraphSAGE, self).__init__()
        self.g = g

        with self.name_scope():
            self.layers = nn.Sequential()
            # input layer
            self.layers.add(SAGEConv(in_feats, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
            # hidden layers
            for i in range(n_layers - 1):
                self.layers.add(SAGEConv(n_hidden, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
            # output layer
            self.layers.add(SAGEConv(n_hidden, n_classes, aggregator_type, feat_drop=dropout, activation=None)) # activation None

    def forward(self, features):
        h = features
        for layer in self.layers:
            h = layer(self.g, h)
        return h

def evaluate(model, features, labels, mask):
    pred = model(features).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = nd.array(data.features)
    labels = nd.array(data.labels)
    train_mask = nd.array(data.train_mask)
    val_mask = nd.array(data.val_mask)
    test_mask = nd.array(data.test_mask)

    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().asscalar(),
           val_mask.sum().asscalar(),
           test_mask.sum().asscalar()))

    if args.gpu < 0:
        ctx = mx.cpu(0)
    else:
        ctx = mx.gpu(args.gpu)
        print("use cuda:", args.gpu)

    features = features.as_in_context(ctx)
    labels = labels.as_in_context(ctx)
    train_mask = train_mask.as_in_context(ctx)
    val_mask = val_mask.as_in_context(ctx)
    test_mask = test_mask.as_in_context(ctx)

    # graph preprocess and calculate normalization factor
    g = data.graph
    g.remove_edges_from(nx.selfloop_edges(g))
    g = DGLGraph(g)
    n_edges = g.number_of_edges()

    # create GraphSAGE model
    model = GraphSAGE(g,
                      in_feats,
                      args.n_hidden,
                      n_classes,
                      args.n_layers,
                      nd.relu,
                      args.dropout,
                      args.aggregator_type
                      )

    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})


    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GraphSAGE')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    parser.add_argument("--aggregator-type", type=str, default="gcn",
                        help="Aggregator type: mean/gcn/pool/lstm")
    args = parser.parse_args()
    print(args)

    main(args)