test_nn.py 54.2 KB
Newer Older
1
import io
2
3
4
5
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
6
import dgl.function as fn
7
import backend as F
8
import pytest
9
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
nv-dlasalle's avatar
nv-dlasalle committed
10
from test_utils import parametrize_idtype
11
from copy import deepcopy
12
import pickle
13

14
15
import scipy as sp

16
17
tmp_buffer = io.BytesIO()

18
19
20
21
22
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

23
24
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv0(out_dim):
25
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
26
    ctx = F.ctx()
27
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
28

29
    conv = nn.GraphConv(5, out_dim, norm='none', bias=True)
30
    conv = conv.to(ctx)
31
    print(conv)
32
33
34
35
36

    # test pickle
    th.save(conv, tmp_buffer)


37
    # test#1: basic
38
    h0 = F.ones((3, 5))
39
    h1 = conv(g, h0)
40
41
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
42
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
43
    # test#2: more-dim
44
    h0 = F.ones((3, 5, 5))
45
    h1 = conv(g, h0)
46
47
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
48
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
49

50
    conv = nn.GraphConv(5, out_dim)
51
    conv = conv.to(ctx)
52
    # test#3: basic
53
    h0 = F.ones((3, 5))
54
    h1 = conv(g, h0)
55
56
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
57
    # test#4: basic
58
    h0 = F.ones((3, 5, 5))
59
    h1 = conv(g, h0)
60
61
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
62

63
    conv = nn.GraphConv(5, out_dim)
64
    conv = conv.to(ctx)
65
    # test#3: basic
66
    h0 = F.ones((3, 5))
67
    h1 = conv(g, h0)
68
69
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
70
    # test#4: basic
71
    h0 = F.ones((3, 5, 5))
72
    h1 = conv(g, h0)
73
74
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
75
76
77
78
79

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
80
    assert not F.allclose(old_weight, new_weight)
81

nv-dlasalle's avatar
nv-dlasalle committed
82
@parametrize_idtype
83
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree', 'dglgraph']))
84
@pytest.mark.parametrize('norm', ['none', 'both', 'right', 'left'])
85
86
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
87
88
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv(idtype, g, norm, weight, bias, out_dim):
89
90
    # Test one tensor input
    g = g.astype(idtype).to(F.ctx())
91
92
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
93
94
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
95
96
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
97
        h_out = conv(g, h)
98
    else:
99
        h_out = conv(g, h, weight=ext_w)
100
    assert h_out.shape == (ndst, out_dim)
101

nv-dlasalle's avatar
nv-dlasalle committed
102
@parametrize_idtype
103
104
105
106
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
107
108
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight(idtype, g, norm, weight, bias, out_dim):
109
    g = g.astype(idtype).to(F.ctx())
110
111
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
112
113
114
115
116
117
118
119
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    e_w = g.edata['scalar_w']
    if weight:
        h_out = conv(g, h, edge_weight=e_w)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=e_w)
120
    assert h_out.shape == (ndst, out_dim)
121

nv-dlasalle's avatar
nv-dlasalle committed
122
@parametrize_idtype
123
124
125
126
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
127
128
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight_norm(idtype, g, norm, weight, bias, out_dim):
129
    g = g.astype(idtype).to(F.ctx())
130
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
131
132
133
134

    # test pickle
    th.save(conv, tmp_buffer)

135
    ext_w = F.randn((5, out_dim)).to(F.ctx())
136
137
138
139
140
141
142
143
144
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    edgenorm = nn.EdgeWeightNorm(norm=norm)
    norm_weight = edgenorm(g, g.edata['scalar_w'])
    if weight:
        h_out = conv(g, h, edge_weight=norm_weight)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=norm_weight)
145
    assert h_out.shape == (ndst, out_dim)
146

nv-dlasalle's avatar
nv-dlasalle committed
147
@parametrize_idtype
148
149
150
151
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
152
153
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_bi(idtype, g, norm, weight, bias, out_dim):
154
155
    # Test a pair of tensor inputs
    g = g.astype(idtype).to(F.ctx())
156
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
157

158
159
160
    # test pickle
    th.save(conv, tmp_buffer)

161
    ext_w = F.randn((5, out_dim)).to(F.ctx())
162
163
164
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
165
    h_dst = F.randn((ndst, out_dim)).to(F.ctx())
166
167
168
169
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
170
    assert h_out.shape == (ndst, out_dim)
171

172
173
174
175
176
177
178
179
180
181
182
183
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

184
185
@pytest.mark.parametrize('out_dim', [1, 2])
def test_tagconv(out_dim):
186
    g = dgl.DGLGraph(nx.path_graph(3))
187
    g = g.to(F.ctx())
188
    ctx = F.ctx()
189
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
190
191
    norm = th.pow(g.in_degrees().float(), -0.5)

192
    conv = nn.TAGConv(5, out_dim, bias=True)
193
    conv = conv.to(ctx)
194
    print(conv)
Mufei Li's avatar
Mufei Li committed
195

196
197
    # test pickle
    th.save(conv, tmp_buffer)
198
199
200

    # test#1: basic
    h0 = F.ones((3, 5))
201
    h1 = conv(g, h0)
202
203
204
205
206
207
208
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias))

209
    conv = nn.TAGConv(5, out_dim)
210
    conv = conv.to(ctx)
211

212
213
    # test#2: basic
    h0 = F.ones((3, 5))
214
    h1 = conv(g, h0)
215
    assert h1.shape[-1] == out_dim
216

217
    # test reset_parameters
218
219
220
221
222
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

223
def test_set2set():
224
    ctx = F.ctx()
225
    g = dgl.DGLGraph(nx.path_graph(10))
226
    g = g.to(F.ctx())
227
228

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
229
    s2s = s2s.to(ctx)
230
231
232
    print(s2s)

    # test#1: basic
233
    h0 = F.randn((g.number_of_nodes(), 5))
234
    h1 = s2s(g, h0)
235
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
236
237

    # test#2: batched graph
238
239
    g1 = dgl.DGLGraph(nx.path_graph(11)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
240
    bg = dgl.batch([g, g1, g2])
241
    h0 = F.randn((bg.number_of_nodes(), 5))
242
    h1 = s2s(bg, h0)
243
244
245
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

def test_glob_att_pool():
246
    ctx = F.ctx()
247
    g = dgl.DGLGraph(nx.path_graph(10))
248
    g = g.to(F.ctx())
249
250

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
251
    gap = gap.to(ctx)
252
253
    print(gap)

254
255
256
    # test pickle
    th.save(gap, tmp_buffer)

257
    # test#1: basic
258
    h0 = F.randn((g.number_of_nodes(), 5))
259
    h1 = gap(g, h0)
260
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
261
262
263

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
264
    h0 = F.randn((bg.number_of_nodes(), 5))
265
    h1 = gap(bg, h0)
266
267
268
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

def test_simple_pool():
269
    ctx = F.ctx()
270
    g = dgl.DGLGraph(nx.path_graph(15))
271
    g = g.to(F.ctx())
272
273
274
275
276
277
278
279

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
280
    h0 = F.randn((g.number_of_nodes(), 5))
281
282
283
284
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
285
    h1 = sum_pool(g, h0)
286
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
287
    h1 = avg_pool(g, h0)
288
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
289
    h1 = max_pool(g, h0)
290
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
291
    h1 = sort_pool(g, h0)
292
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
293
294

    # test#2: batched graph
295
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
296
    bg = dgl.batch([g, g_, g, g_, g])
297
    h0 = F.randn((bg.number_of_nodes(), 5))
298
    h1 = sum_pool(bg, h0)
299
300
301
302
303
304
    truth = th.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
305

306
    h1 = avg_pool(bg, h0)
307
308
309
310
311
312
    truth = th.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
313

314
    h1 = max_pool(bg, h0)
315
316
317
318
319
320
    truth = th.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
321

322
    h1 = sort_pool(bg, h0)
323
324
325
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

def test_set_trans():
326
    ctx = F.ctx()
327
328
329
330
331
    g = dgl.DGLGraph(nx.path_graph(15))

    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'sab')
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'isab', 3)
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
332
333
334
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
335
336
337
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
338
    h0 = F.randn((g.number_of_nodes(), 50))
339
    h1 = st_enc_0(g, h0)
340
    assert h1.shape == h0.shape
341
    h1 = st_enc_1(g, h0)
342
    assert h1.shape == h0.shape
343
    h2 = st_dec(g, h1)
344
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
345
346
347
348
349

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
350
    h0 = F.randn((bg.number_of_nodes(), 50))
351
    h1 = st_enc_0(bg, h0)
352
    assert h1.shape == h0.shape
353
    h1 = st_enc_1(bg, h0)
354
355
    assert h1.shape == h0.shape

356
    h2 = st_dec(bg, h1)
357
358
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

nv-dlasalle's avatar
nv-dlasalle committed
359
@parametrize_idtype
360
361
@pytest.mark.parametrize('O', [1, 8, 32])
def test_rgcn(idtype, O):
Minjie Wang's avatar
Minjie Wang committed
362
363
    ctx = F.ctx()
    etype = []
364
365
    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.1))
    g = g.astype(idtype).to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
366
367
368
369
370
371
372
373
374
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10

    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
375
    norm = th.rand((g.number_of_edges(), 1)).to(ctx)
376
377
378
    sorted_r, idx = th.sort(r)
    sorted_g = dgl.reorder_graph(g, edge_permute_algo='custom', permute_config={'edges_perm' : idx.to(idtype)})
    sorted_norm = norm[idx]
Minjie Wang's avatar
Minjie Wang committed
379

380
381
    rgc = nn.RelGraphConv(I, O, R).to(ctx)
    th.save(rgc, tmp_buffer)  # test pickle
Minjie Wang's avatar
Minjie Wang committed
382
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
383
    th.save(rgc_basis, tmp_buffer)  # test pickle
384
385
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
386
        th.save(rgc_bdd, tmp_buffer)  # test pickle
387

388
389
390
391
392
    # basic usage
    h_new = rgc(g, h, r)
    assert h_new.shape == (100, O)
    h_new_basis = rgc_basis(g, h, r)
    assert h_new_basis.shape == (100, O)
393
    if O % B == 0:
394
395
396
397
398
399
400
401
402
403
404
        h_new_bdd = rgc_bdd(g, h, r)
        assert h_new_bdd.shape == (100, O)

    # sorted input
    h_new_sorted = rgc(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new, h_new_sorted, atol=1e-4, rtol=1e-4)
    h_new_basis_sorted = rgc_basis(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new_basis, h_new_basis_sorted, atol=1e-4, rtol=1e-4)
    if O % B == 0:
        h_new_bdd_sorted = rgc_bdd(sorted_g, h, sorted_r, presorted=True)
        assert th.allclose(h_new_bdd, h_new_bdd_sorted, atol=1e-4, rtol=1e-4)
405

406
407
408
    # norm input
    h_new = rgc(g, h, r, norm)
    assert h_new.shape == (100, O)
409
    h_new = rgc_basis(g, h, r, norm)
410
    assert h_new.shape == (100, O)
411
412
    if O % B == 0:
        h_new = rgc_bdd(g, h, r, norm)
413
        assert h_new.shape == (100, O)
414
415


nv-dlasalle's avatar
nv-dlasalle committed
416
@parametrize_idtype
417
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
418
@pytest.mark.parametrize('out_dim', [1, 5])
419
420
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv(g, idtype, out_dim, num_heads):
421
    g = g.astype(idtype).to(F.ctx())
422
    ctx = F.ctx()
423
    gat = nn.GATConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
424
    feat = F.randn((g.number_of_src_nodes(), 5))
425
    gat = gat.to(ctx)
426
    h = gat(g, feat)
427
428
429
430

    # test pickle
    th.save(gat, tmp_buffer)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
431
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
432
    _, a = gat(g, feat, get_attention=True)
433
    assert a.shape == (g.number_of_edges(), num_heads, 1)
434

435
436
437
438
439
    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

nv-dlasalle's avatar
nv-dlasalle committed
440
@parametrize_idtype
441
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
442
443
444
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv_bi(g, idtype, out_dim, num_heads):
445
446
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
447
    gat = nn.GATConv(5, out_dim, num_heads)
448
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
449
450
    gat = gat.to(ctx)
    h = gat(g, feat)
451
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
452
    _, a = gat(g, feat, get_attention=True)
453
    assert a.shape == (g.number_of_edges(), num_heads, 1)
454

nv-dlasalle's avatar
nv-dlasalle committed
455
@parametrize_idtype
Shaked Brody's avatar
Shaked Brody committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = F.randn((g.number_of_src_nodes(), 5))
    gat = gat.to(ctx)
    h = gat(g, feat)

    # test pickle
    th.save(gat, tmp_buffer)

    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

nv-dlasalle's avatar
nv-dlasalle committed
479
@parametrize_idtype
Shaked Brody's avatar
Shaked Brody committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv_bi(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    gat = gat.to(ctx)
    h = gat(g, feat)
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

nv-dlasalle's avatar
nv-dlasalle committed
494
@parametrize_idtype
495
496
497
498
499
500
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_node_feats', [1, 5])
@pytest.mark.parametrize('out_edge_feats', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_egat_conv(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
501
    ctx = F.ctx()
502
503
504
505
506
507
508
509
510
    egat = nn.EGATConv(in_node_feats=10,
                       in_edge_feats=5,
                       out_node_feats=out_node_feats,
                       out_edge_feats=out_edge_feats,
                       num_heads=num_heads)
    nfeat = F.randn((g.number_of_nodes(), 10))
    efeat = F.randn((g.number_of_edges(), 5))
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
511

512
    th.save(egat, tmp_buffer)
513

514
515
516
517
    assert h.shape == (g.number_of_nodes(), num_heads, out_node_feats)
    assert f.shape == (g.number_of_edges(), num_heads, out_edge_feats)
    _, _, attn = egat(g, nfeat, efeat, True)
    assert attn.shape == (g.number_of_edges(), num_heads, 1)
518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
@parametrize_idtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_node_feats', [1, 5])
@pytest.mark.parametrize('out_edge_feats', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_egat_conv_bi(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    egat = nn.EGATConv(in_node_feats=(10,15),
                       in_edge_feats=7,
                       out_node_feats=out_node_feats,
                       out_edge_feats=out_edge_feats,
                       num_heads=num_heads)
    nfeat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), 15)))
    efeat = F.randn((g.number_of_edges(), 7))
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
536

Mufei Li's avatar
Mufei Li committed
537
    th.save(egat, tmp_buffer)
538

539
540
541
542
543
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_node_feats)
    assert f.shape == (g.number_of_edges(), num_heads, out_edge_feats)
    _, _, attn = egat(g, nfeat, efeat, True)
    assert attn.shape == (g.number_of_edges(), num_heads, 1)

nv-dlasalle's avatar
nv-dlasalle committed
544
@parametrize_idtype
545
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
546
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
547
548
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
549
    sage = nn.SAGEConv(5, 10, aggre_type)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
550
    feat = F.randn((g.number_of_src_nodes(), 5))
551
    sage = sage.to(F.ctx())
552
553
    # test pickle
    th.save(sage, tmp_buffer)
554
555
556
    h = sage(g, feat)
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
557
@parametrize_idtype
558
@pytest.mark.parametrize('g', get_cases(['bipartite']))
559
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
560
561
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv_bi(idtype, g, aggre_type, out_dim):
562
    g = g.astype(idtype).to(F.ctx())
563
    dst_dim = 5 if aggre_type != 'gcn' else 10
564
    sage = nn.SAGEConv((10, dst_dim), out_dim, aggre_type)
565
566
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
    sage = sage.to(F.ctx())
567
    h = sage(g, feat)
568
    assert h.shape[-1] == out_dim
569
    assert h.shape[0] == g.number_of_dst_nodes()
570

nv-dlasalle's avatar
nv-dlasalle committed
571
@parametrize_idtype
572
573
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv2(idtype, out_dim):
574
    # TODO: add test for blocks
Mufei Li's avatar
Mufei Li committed
575
    # Test the case for graphs without edges
576
    g = dgl.heterograph({('_U', '_E', '_V'): ([], [])}, {'_U': 5, '_V': 3})
577
578
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
579
    sage = nn.SAGEConv((3, 3), out_dim, 'gcn')
Mufei Li's avatar
Mufei Li committed
580
581
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage = sage.to(ctx)
582
    h = sage(g, (F.copy_to(feat[0], F.ctx()), F.copy_to(feat[1], F.ctx())))
583
    assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
584
585
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
586
        sage = nn.SAGEConv((3, 1), out_dim, aggre_type)
Mufei Li's avatar
Mufei Li committed
587
588
589
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage = sage.to(ctx)
        h = sage(g, feat)
590
        assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
591
592
        assert h.shape[0] == 3

nv-dlasalle's avatar
nv-dlasalle committed
593
@parametrize_idtype
594
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
595
596
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sgc_conv(g, idtype, out_dim):
597
    ctx = F.ctx()
598
    g = g.astype(idtype).to(ctx)
599
    # not cached
600
    sgc = nn.SGConv(5, out_dim, 3)
601
602
603
604

    # test pickle
    th.save(sgc, tmp_buffer)

605
    feat = F.randn((g.number_of_nodes(), 5))
606
    sgc = sgc.to(ctx)
607

608
    h = sgc(g, feat)
609
    assert h.shape[-1] == out_dim
610
611

    # cached
612
    sgc = nn.SGConv(5, out_dim, 3, True)
613
    sgc = sgc.to(ctx)
614
615
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
616
    assert F.allclose(h_0, h_1)
617
    assert h_0.shape[-1] == out_dim
618

nv-dlasalle's avatar
nv-dlasalle committed
619
@parametrize_idtype
620
621
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv(g, idtype):
622
    ctx = F.ctx()
623
    g = g.astype(idtype).to(ctx)
624
    appnp = nn.APPNPConv(10, 0.1)
625
    feat = F.randn((g.number_of_nodes(), 5))
626
    appnp = appnp.to(ctx)
Mufei Li's avatar
Mufei Li committed
627

628
629
    # test pickle
    th.save(appnp, tmp_buffer)
630

631
    h = appnp(g, feat)
632
633
    assert h.shape[-1] == 5

634

nv-dlasalle's avatar
nv-dlasalle committed
635
@parametrize_idtype
636
637
638
639
640
641
642
643
644
645
646
647
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    appnp = appnp.to(ctx)

    h = appnp(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
648
@parametrize_idtype
649
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
650
651
@pytest.mark.parametrize("bias", [True, False])
def test_gcn2conv_e_weight(g, idtype, bias):
652
653
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
654
    gcn2conv = nn.GCN2Conv(5, layer=2, alpha=0.5, bias=bias,
655
656
657
658
659
660
661
662
663
                           project_initial_features=True)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    gcn2conv = gcn2conv.to(ctx)
    res = feat
    h = gcn2conv(g, res, feat, edge_weight=eweight)
    assert h.shape[-1] == 5


nv-dlasalle's avatar
nv-dlasalle committed
664
@parametrize_idtype
665
666
667
668
669
670
671
672
673
674
675
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_sgconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    sgconv = nn.SGConv(5, 5, 3)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    sgconv = sgconv.to(ctx)
    h = sgconv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
676
@parametrize_idtype
677
678
679
680
681
682
683
684
685
686
687
688
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_tagconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    conv = nn.TAGConv(5, 5, bias=True)
    conv = conv.to(ctx)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    conv = conv.to(ctx)
    h = conv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
689
@parametrize_idtype
690
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
691
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
692
693
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
694
695
696
697
698
    ctx = F.ctx()
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
VoVAllen's avatar
VoVAllen committed
699
    th.save(gin, tmp_buffer)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
700
    feat = F.randn((g.number_of_src_nodes(), 5))
701
702
    gin = gin.to(ctx)
    h = gin(g, feat)
703
704

    # test pickle
VoVAllen's avatar
VoVAllen committed
705
    th.save(gin, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
706

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
707
    assert h.shape == (g.number_of_dst_nodes(), 12)
708

Mufei Li's avatar
Mufei Li committed
709
710
711
712
    gin = nn.GINConv(None, aggregator_type)
    th.save(gin, tmp_buffer)
    gin = gin.to(ctx)
    h = gin(g, feat)
713

nv-dlasalle's avatar
nv-dlasalle committed
714
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_gine_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    gine = nn.GINEConv(
        th.nn.Linear(5, 12)
    )
    th.save(gine, tmp_buffer)
    nfeat = F.randn((g.number_of_src_nodes(), 5))
    efeat = F.randn((g.num_edges(), 5))
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

    # test pickle
    th.save(gine, tmp_buffer)
    assert h.shape == (g.number_of_dst_nodes(), 12)

    gine = nn.GINEConv(None)
    th.save(gine, tmp_buffer)
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

nv-dlasalle's avatar
nv-dlasalle committed
737
@parametrize_idtype
738
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
739
740
741
742
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
743
744
745
746
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
747
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
748
749
    gin = gin.to(ctx)
    h = gin(g, feat)
750
    assert h.shape == (g.number_of_dst_nodes(), 12)
751

nv-dlasalle's avatar
nv-dlasalle committed
752
@parametrize_idtype
753
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
754
755
def test_agnn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
756
757
    ctx = F.ctx()
    agnn = nn.AGNNConv(1)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
758
    feat = F.randn((g.number_of_src_nodes(), 5))
759
    agnn = agnn.to(ctx)
760
    h = agnn(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
761
    assert h.shape == (g.number_of_dst_nodes(), 5)
762

nv-dlasalle's avatar
nv-dlasalle committed
763
@parametrize_idtype
764
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
765
766
767
def test_agnn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
768
    agnn = nn.AGNNConv(1)
769
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
770
771
    agnn = agnn.to(ctx)
    h = agnn(g, feat)
772
    assert h.shape == (g.number_of_dst_nodes(), 5)
773

nv-dlasalle's avatar
nv-dlasalle committed
774
@parametrize_idtype
775
776
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv(g, idtype):
777
    ctx = F.ctx()
778
    g = g.astype(idtype).to(ctx)
779
780
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
    etypes = th.arange(g.number_of_edges()) % 3
781
    feat = F.randn((g.number_of_nodes(), 5))
782
783
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
784

785
    h = ggconv(g, feat, etypes)
786
787
788
    # current we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
789
@parametrize_idtype
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv_one_etype(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    ggconv = nn.GatedGraphConv(5, 10, 5, 1)
    etypes = th.zeros(g.number_of_edges())
    feat = F.randn((g.number_of_nodes(), 5))
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)

    h = ggconv(g, feat, etypes)
    h2 = ggconv(g, feat)
    # current we only do shape check
    assert F.allclose(h, h2)
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
806
@parametrize_idtype
807
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
808
809
def test_nn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
810
811
812
    ctx = F.ctx()
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
813
    feat = F.randn((g.number_of_src_nodes(), 5))
814
815
816
817
818
819
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
820
@parametrize_idtype
821
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
822
823
824
def test_nn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
825
826
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv((5, 2), 10, edge_func, 'mean')
827
828
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
829
830
831
832
833
834
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
835
@parametrize_idtype
836
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
837
838
def test_gmm_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
839
840
    ctx = F.ctx()
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
841
    feat = F.randn((g.number_of_nodes(), 5))
842
    pseudo = F.randn((g.number_of_edges(), 3))
843
    gmmconv = gmmconv.to(ctx)
844
    h = gmmconv(g, feat, pseudo)
845
846
847
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
848
@parametrize_idtype
849
@pytest.mark.parametrize('g', get_cases(['bipartite', 'block-bipartite'], exclude=['zero-degree']))
850
851
852
def test_gmm_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
853
    gmmconv = nn.GMMConv((5, 2), 10, 3, 4, 'mean')
854
855
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
856
857
858
859
860
861
    pseudo = F.randn((g.number_of_edges(), 3))
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, (feat, feat_dst), pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
862
@parametrize_idtype
863
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
864
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
865
866
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_graph_conv(norm_type, g, idtype, out_dim):
867
    g = g.astype(idtype).to(F.ctx())
868
    ctx = F.ctx()
869
    # TODO(minjie): enable the following option after #1385
870
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
871
872
    conv = nn.GraphConv(5, out_dim, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, out_dim, norm=norm_type, bias=True)
873
874
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
875
    feat = F.randn((g.number_of_src_nodes(), 5))
876
877
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
878
879
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
880
881
    assert F.allclose(out_conv, out_dense_conv)

nv-dlasalle's avatar
nv-dlasalle committed
882
@parametrize_idtype
883
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite']))
884
885
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_sage_conv(g, idtype, out_dim):
886
    g = g.astype(idtype).to(F.ctx())
887
    ctx = F.ctx()
888
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
889
890
    sage = nn.SAGEConv(5, out_dim, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, out_dim)
891
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
892
    dense_sage.fc.bias.data = sage.bias.data
893
894
895
896
897
898
899
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
900
901
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
902
903
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
904
905
    assert F.allclose(out_sage, out_dense_sage), g

nv-dlasalle's avatar
nv-dlasalle committed
906
@parametrize_idtype
907
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
908
909
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv(g, idtype, out_dim):
910
    g = g.astype(idtype).to(F.ctx())
911
    ctx = F.ctx()
912
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
913
    print(edge_conv)
914
915
916

    # test pickle
    th.save(edge_conv, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
917

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
918
    h0 = F.randn((g.number_of_src_nodes(), 5))
919
    h1 = edge_conv(g, h0)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
920
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
921

nv-dlasalle's avatar
nv-dlasalle committed
922
@parametrize_idtype
923
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
924
925
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv_bi(g, idtype, out_dim):
926
927
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
928
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
929
    print(edge_conv)
930
    h0 = F.randn((g.number_of_src_nodes(), 5))
931
932
    x0 = F.randn((g.number_of_dst_nodes(), 5))
    h1 = edge_conv(g, (h0, x0))
933
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
Mufei Li's avatar
Mufei Li committed
934

nv-dlasalle's avatar
nv-dlasalle committed
935
@parametrize_idtype
936
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
937
938
939
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv(g, idtype, out_dim, num_heads):
940
941
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
942
    dotgat = nn.DotGatConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
943
    feat = F.randn((g.number_of_src_nodes(), 5))
944
    dotgat = dotgat.to(ctx)
Mufei Li's avatar
Mufei Li committed
945

946
947
    # test pickle
    th.save(dotgat, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
948

949
    h = dotgat(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
950
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
951
    _, a = dotgat(g, feat, get_attention=True)
952
    assert a.shape == (g.number_of_edges(), num_heads, 1)
953

nv-dlasalle's avatar
nv-dlasalle committed
954
@parametrize_idtype
955
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
956
957
958
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv_bi(g, idtype, out_dim, num_heads):
959
960
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
961
    dotgat = nn.DotGatConv((5, 5), out_dim, num_heads)
962
963
964
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    dotgat = dotgat.to(ctx)
    h = dotgat(g, feat)
965
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
966
    _, a = dotgat(g, feat, get_attention=True)
967
    assert a.shape == (g.number_of_edges(), num_heads, 1)
968

969
970
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_cheb_conv(out_dim):
971
972
973
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
974
        g = g.to(F.ctx())
975
        adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
976
977
        cheb = nn.ChebConv(5, out_dim, k, None)
        dense_cheb = nn.DenseChebConv(5, out_dim, k)
Axel Nilsson's avatar
Axel Nilsson committed
978
979
        #for i in range(len(cheb.fc)):
        #    dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
980
        dense_cheb.W.data = cheb.linear.weight.data.transpose(-1, -2).view(k, 5, out_dim)
Axel Nilsson's avatar
Axel Nilsson committed
981
982
        if cheb.linear.bias is not None:
            dense_cheb.bias.data = cheb.linear.bias.data
983
        feat = F.randn((100, 5))
984
985
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
986
987
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
Axel Nilsson's avatar
Axel Nilsson committed
988
        print(k, out_cheb, out_dense_cheb)
989
990
        assert F.allclose(out_cheb, out_dense_cheb)

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
def test_sequential():
    ctx = F.ctx()
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
1010
    g = g.to(F.ctx())
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1)

1031
1032
1033
    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2)).to(F.ctx())
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8)).to(F.ctx())
1034
1035
1036
1037
1038
1039
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

nv-dlasalle's avatar
nv-dlasalle committed
1040
@parametrize_idtype
1041
1042
1043
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_atomic_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
1044
1045
1046
1047
1048
1049
1050
1051
1052
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

1053
    feat = F.randn((g.number_of_nodes(), 1))
1054
1055
1056
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
1057

1058
1059
1060
    # current we only do shape check
    assert h.shape[-1] == 4

nv-dlasalle's avatar
nv-dlasalle committed
1061
@parametrize_idtype
1062
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
1063
1064
@pytest.mark.parametrize('out_dim', [1, 3])
def test_cf_conv(g, idtype, out_dim):
1065
    g = g.astype(idtype).to(F.ctx())
1066
1067
1068
    cfconv = nn.CFConv(node_in_feats=2,
                       edge_in_feats=3,
                       hidden_feats=2,
1069
                       out_feats=out_dim)
1070
1071
1072
1073
1074

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

1075
    src_feats = F.randn((g.number_of_src_nodes(), 2))
1076
    edge_feats = F.randn((g.number_of_edges(), 3))
1077
1078
1079
1080
1081
1082
1083
    h = cfconv(g, src_feats, edge_feats)
    # current we only do shape check
    assert h.shape[-1] == out_dim

    # case for bipartite graphs
    dst_feats = F.randn((g.number_of_dst_nodes(), 3))
    h = cfconv(g, (src_feats, dst_feats), edge_feats)
1084
    # current we only do shape check
1085
    assert h.shape[-1] == out_dim
1086

1087
1088
1089
1090
1091
1092
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

nv-dlasalle's avatar
nv-dlasalle committed
1093
@parametrize_idtype
1094
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
1095
def test_hetero_conv(agg, idtype):
1096
    g = dgl.heterograph({
1097
1098
1099
        ('user', 'follows', 'user'): ([0, 0, 2, 1], [1, 2, 1, 3]),
        ('user', 'plays', 'game'): ([0, 0, 0, 1, 2], [0, 2, 3, 0, 2]),
        ('store', 'sells', 'game'): ([0, 0, 1, 1], [0, 3, 1, 2])},
1100
        idtype=idtype, device=F.ctx())
1101
    conv = nn.HeteroGraphConv({
1102
1103
1104
        'follows': nn.GraphConv(2, 3, allow_zero_in_degree=True),
        'plays': nn.GraphConv(2, 4, allow_zero_in_degree=True),
        'sells': nn.GraphConv(3, 4, allow_zero_in_degree=True)},
1105
        agg)
1106
    conv = conv.to(F.ctx())
1107
1108
1109
1110

    # test pickle
    th.save(conv, tmp_buffer)

1111
1112
1113
1114
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))

1115
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
1116
1117
1118
1119
1120
1121
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1122
        assert h['game'].shape == (4, 2, 4)
1123

1124
1125
    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf}, {'user': uf, 'game': gf, 'store': sf[0:0]}))
1126
1127
1128
1129
1130
1131
1132
1133
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

1134
    h = conv(block, {'user': uf, 'game': gf, 'store': sf})
1135
1136
1137
1138
1139
1140
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1141
        assert h['game'].shape == (4, 2, 4)
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
1165
    conv = conv.to(F.ctx())
1166
1167
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
1168
    h = conv(g, {'user' : uf, 'game': gf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
1169
1170
1171
1172
1173
1174
1175
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    #conv on graph without any edges
    for etype in g.etypes:
        g = dgl.remove_edges(g, g.edges(form='eid', etype=etype), etype=etype)
    assert g.num_edges() == 0
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}

    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [
                         0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf},
             {'user': uf, 'game': gf, 'store': sf[0:0]}))
    assert set(h.keys()) == {'user', 'game'}

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
@pytest.mark.parametrize('out_dim', [1, 2, 100])
def test_hetero_linear(out_dim):
    in_feats = {
        'user': F.randn((2, 1)),
        ('user', 'follows', 'user'): F.randn((3, 2))
    }

    layer = nn.HeteroLinear({'user': 1, ('user', 'follows', 'user'): 2}, out_dim)
    layer = layer.to(F.ctx())
    out_feats = layer(in_feats)
    assert out_feats['user'].shape == (2, out_dim)
    assert out_feats[('user', 'follows', 'user')].shape == (3, out_dim)

@pytest.mark.parametrize('out_dim', [1, 2, 100])
def test_hetero_embedding(out_dim):
    layer = nn.HeteroEmbedding({'user': 2, ('user', 'follows', 'user'): 3}, out_dim)
    layer = layer.to(F.ctx())

    embeds = layer.weight
    assert embeds['user'].shape == (2, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (3, out_dim)

    embeds = layer({
        'user': F.tensor([0], dtype=F.int64),
        ('user', 'follows', 'user'): F.tensor([0, 2], dtype=F.int64)
    })
    assert embeds['user'].shape == (1, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (2, out_dim)

nv-dlasalle's avatar
nv-dlasalle committed
1218
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 2])
def test_gnnexplainer(g, idtype, out_dim):
    g = g.astype(idtype).to(F.ctx())
    feat = F.randn((g.num_nodes(), 5))

    class Model(th.nn.Module):
        def __init__(self, in_feats, out_feats, graph=False):
            super(Model, self).__init__()
            self.linear = th.nn.Linear(in_feats, out_feats)
            if graph:
                self.pool = nn.AvgPooling()
            else:
                self.pool = None

        def forward(self, graph, feat, eweight=None):
            with graph.local_scope():
                feat = self.linear(feat)
                graph.ndata['h'] = feat
                if eweight is None:
                    graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
                else:
                    graph.edata['w'] = eweight
                    graph.update_all(fn.u_mul_e('h', 'w', 'm'), fn.sum('m', 'h'))

                if self.pool:
                    return self.pool(graph, graph.ndata['h'])
                else:
                    return graph.ndata['h']

    # Explain node prediction
    model = Model(5, out_dim)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    new_center, sg, feat_mask, edge_mask = explainer.explain_node(0, g, feat)

    # Explain graph prediction
    model = Model(5, out_dim, graph=True)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    feat_mask, edge_mask = explainer.explain_graph(g, feat)

Mufei Li's avatar
Mufei Li committed
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
def test_jumping_knowledge():
    ctx = F.ctx()
    num_layers = 2
    num_nodes = 3
    num_feats = 4

    feat_list = [th.randn((num_nodes, num_feats)).to(ctx) for _ in range(num_layers)]

    model = nn.JumpingKnowledge('cat').to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_layers * num_feats)

    model = nn.JumpingKnowledge('max').to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

    model = nn.JumpingKnowledge('lstm', num_feats, num_layers).to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

Mufei Li's avatar
Mufei Li committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
@pytest.mark.parametrize('op', ['dot', 'cos', 'ele', 'cat'])
def test_edge_predictor(op):
    ctx = F.ctx()
    num_pairs = 3
    in_feats = 4
    out_feats = 5
    h_src = th.randn((num_pairs, in_feats)).to(ctx)
    h_dst = th.randn((num_pairs, in_feats)).to(ctx)

    pred = nn.EdgePredictor(op)
    if op in ['dot', 'cos']:
        assert pred(h_src, h_dst).shape == (num_pairs, 1)
    elif op == 'ele':
        assert pred(h_src, h_dst).shape == (num_pairs, in_feats)
    else:
        assert pred(h_src, h_dst).shape == (num_pairs, 2 * in_feats)
    pred = nn.EdgePredictor(op, in_feats, out_feats, bias=True).to(ctx)
    assert pred(h_src, h_dst).shape == (num_pairs, out_feats)

Mufei Li's avatar
Mufei Li committed
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

def test_ke_score_funcs():
    ctx = F.ctx()
    num_edges = 30
    num_rels = 3
    nfeats = 4

    h_src = th.randn((num_edges, nfeats)).to(ctx)
    h_dst = th.randn((num_edges, nfeats)).to(ctx)
    rels = th.randint(low=0, high=num_rels, size=(num_edges,)).to(ctx)

    score_func = nn.TransE(num_rels=num_rels, feats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)

    score_func = nn.TransR(num_rels=num_rels, rfeats=nfeats - 1, nfeats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)


1320
def test_twirls():
1321
1322
1323
1324
1325
    g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
    feat = th.ones(6, 10)
    conv = nn.TWIRLSConv(10, 2, 128, prop_step = 64)
    res = conv(g , feat)
    assert ( res.size() == (6,2) )
1326

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
@pytest.mark.parametrize('feat_size', [4, 32])
@pytest.mark.parametrize('regularizer,num_bases', [(None, None), ('basis', 4), ('bdd', 4)])
def test_typed_linear(feat_size, regularizer, num_bases):
    dev = F.ctx()
    num_types = 5
    lin = nn.TypedLinear(feat_size, feat_size * 2, 5, regularizer=regularizer, num_bases=num_bases).to(dev)
    print(lin)
    x = th.randn(100, feat_size).to(dev)
    x_type = th.randint(0, 5, (100,)).to(dev)
    x_type_sorted, idx = th.sort(x_type)
    _, rev_idx = th.sort(idx)
    x_sorted = x[idx]

    # test unsorted
    y = lin(x, x_type)
    assert y.shape == (100, feat_size * 2)
    # test sorted
    y_sorted = lin(x_sorted, x_type_sorted, sorted_by_type=True)
    assert y_sorted.shape == (100, feat_size * 2)

    assert th.allclose(y, y_sorted[rev_idx], atol=1e-4, rtol=1e-4)
1348

nv-dlasalle's avatar
nv-dlasalle committed
1349
@parametrize_idtype
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
@pytest.mark.parametrize('in_size', [4])
@pytest.mark.parametrize('num_heads', [1])
def test_hgt(idtype, in_size, num_heads):
    dev = F.ctx()
    num_etypes = 5
    num_ntypes = 2
    head_size = in_size // num_heads

    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.01))
    g = g.astype(idtype).to(dev)
    etype = th.tensor([i % num_etypes for i in range(g.num_edges())]).to(dev)
    ntype = th.tensor([i % num_ntypes for i in range(g.num_nodes())]).to(dev)
    x = th.randn(g.num_nodes(), in_size).to(dev)
1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    m = nn.HGTConv(in_size, head_size, num_heads, num_ntypes, num_etypes).to(dev)

    y = m(g, x, ntype, etype)
    assert y.shape == (g.num_nodes(), head_size * num_heads)
    # presorted
    sorted_ntype, idx_nt = th.sort(ntype)
    sorted_etype, idx_et = th.sort(etype)
    _, rev_idx = th.sort(idx_nt)
    g.ndata['t'] = ntype
    g.ndata['x'] = x
    g.edata['t'] = etype
    sorted_g = dgl.reorder_graph(g, node_permute_algo='custom', edge_permute_algo='custom',
                                 permute_config={'nodes_perm' : idx_nt.to(idtype), 'edges_perm' : idx_et.to(idtype)})
    print(sorted_g.ndata['t'])
    print(sorted_g.edata['t'])
    sorted_x = sorted_g.ndata['x']
    sorted_y = m(sorted_g, sorted_x, sorted_ntype, sorted_etype, presorted=False)
    assert sorted_y.shape == (g.num_nodes(), head_size * num_heads)
    # TODO(minjie): enable the following check
    #assert th.allclose(y, sorted_y[rev_idx], atol=1e-4, rtol=1e-4)
1384

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
@pytest.mark.parametrize('self_loop', [True, False])
@pytest.mark.parametrize('get_distances', [True, False])
def test_radius_graph(self_loop, get_distances):
    pos = th.tensor([[0.1, 0.3, 0.4],
                     [0.5, 0.2, 0.1],
                     [0.7, 0.9, 0.5],
                     [0.3, 0.2, 0.5],
                     [0.2, 0.8, 0.2],
                     [0.9, 0.2, 0.1],
                     [0.7, 0.4, 0.4],
                     [0.2, 0.1, 0.6],
                     [0.5, 0.3, 0.5],
                     [0.4, 0.2, 0.6]])

    rg = nn.RadiusGraph(0.3, self_loop=self_loop)

    if get_distances:
        g, dists = rg(pos, get_distances=get_distances)
    else:
        g = rg(pos)

    if self_loop:
        src_target = th.tensor([0, 0, 1, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 7, 7, 7,
                                8, 8, 8, 8, 9, 9, 9, 9])
        dst_target = th.tensor([0, 3, 1, 2, 0, 3, 7, 8, 9, 4, 5, 6, 8, 3, 7, 9,
                                3, 6, 8, 9, 3, 7, 8, 9])

        if get_distances:
            dists_target = th.tensor([[0.0000],
                                      [0.2449],
                                      [0.0000],
                                      [0.0000],
                                      [0.2449],
                                      [0.0000],
                                      [0.1732],
                                      [0.2236],
                                      [0.1414],
                                      [0.0000],
                                      [0.0000],
                                      [0.0000],
                                      [0.2449],
                                      [0.1732],
                                      [0.0000],
                                      [0.2236],
                                      [0.2236],
                                      [0.2449],
                                      [0.0000],
                                      [0.1732],
                                      [0.1414],
                                      [0.2236],
                                      [0.1732],
                                      [0.0000]])
    else:
        src_target = th.tensor([0, 3, 3, 3, 3, 6, 7, 7, 8, 8, 8, 9, 9, 9])
        dst_target = th.tensor([3, 0, 7, 8, 9, 8, 3, 9, 3, 6, 9, 3, 7, 8])

        if get_distances:
            dists_target = th.tensor([[0.2449],
                                      [0.2449],
                                      [0.1732],
                                      [0.2236],
                                      [0.1414],
                                      [0.2449],
                                      [0.1732],
                                      [0.2236],
                                      [0.2236],
                                      [0.2449],
                                      [0.1732],
                                      [0.1414],
                                      [0.2236],
                                      [0.1732]])

    src, dst = g.edges()

    assert th.equal(src, src_target)
    assert th.equal(dst, dst_target)

    if get_distances:
        assert th.allclose(dists, dists_target, rtol=1e-03)

nv-dlasalle's avatar
nv-dlasalle committed
1465
@parametrize_idtype
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
def test_group_rev_res(idtype):
    dev = F.ctx()

    num_nodes = 5
    num_edges = 20
    feats = 32
    groups = 2
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, feats).to(dev)
    conv = nn.GraphConv(feats // groups, feats // groups)
    model = nn.GroupRevRes(conv, groups).to(dev)
1477
1478
    result = model(g, h)
    result.sum().backward()
rudongyu's avatar
rudongyu committed
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('hidden_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
@pytest.mark.parametrize('edge_feat_size', [16, 10, 0])
def test_egnn_conv(in_size, hidden_size, out_size, edge_feat_size):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    x = th.randn(num_nodes, 3).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    model = nn.EGNNConv(in_size, hidden_size, out_size, edge_feat_size).to(dev)
    model(g, h, x, e)

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
Mufei Li's avatar
Mufei Li committed
1497
@pytest.mark.parametrize('aggregators',
rudongyu's avatar
rudongyu committed
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    [['mean', 'max', 'sum'], ['min', 'std', 'var'], ['moment3', 'moment4', 'moment5']])
@pytest.mark.parametrize('scalers', [['identity'], ['amplification', 'attenuation']])
@pytest.mark.parametrize('delta', [2.5, 7.4])
@pytest.mark.parametrize('dropout', [0., 0.1])
@pytest.mark.parametrize('num_towers', [1, 4])
@pytest.mark.parametrize('edge_feat_size', [16, 0])
@pytest.mark.parametrize('residual', [True, False])
def test_pna_conv(in_size, out_size, aggregators, scalers, delta,
    dropout, num_towers, edge_feat_size, residual):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    model = nn.PNAConv(in_size, out_size, aggregators, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e)
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

@pytest.mark.parametrize('k', [3, 5])
@pytest.mark.parametrize('alpha', [0., 0.5, 1.])
@pytest.mark.parametrize('norm_type', ['sym', 'row'])
@pytest.mark.parametrize('clamp', [True, False])
@pytest.mark.parametrize('normalize', [True, False])
@pytest.mark.parametrize('reset', [True, False])
def test_label_prop(k, alpha, norm_type, clamp, normalize, reset):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    num_classes = 4
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    labels = th.tensor([0, 2, 1, 3, 0]).long().to(dev)
    ml_labels = th.rand(num_nodes, num_classes).to(dev) > 0.7
    mask = th.tensor([0, 1, 1, 1, 0]).bool().to(dev)
    model = nn.LabelPropagation(k, alpha, norm_type, clamp, normalize, reset)
    model(g, labels, mask)
    # multi-label case
    model(g, ml_labels, mask)

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
@pytest.mark.parametrize('aggregators',
    [['mean', 'max', 'dir2-av'], ['min', 'std', 'dir1-dx'], ['moment3', 'moment4', 'dir3-av']])
@pytest.mark.parametrize('scalers', [['identity'], ['amplification', 'attenuation']])
@pytest.mark.parametrize('delta', [2.5, 7.4])
@pytest.mark.parametrize('dropout', [0., 0.1])
@pytest.mark.parametrize('num_towers', [1, 4])
@pytest.mark.parametrize('edge_feat_size', [16, 0])
@pytest.mark.parametrize('residual', [True, False])
def test_dgn_conv(in_size, out_size, aggregators, scalers, delta,
    dropout, num_towers, edge_feat_size, residual):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    transform = dgl.LaplacianPE(k=3, feat_name='eig')
    g = transform(g)
    eig = g.ndata['eig']
    model = nn.DGNConv(in_size, out_size, aggregators, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e, eig_vec=eig)

    aggregators_non_eig = [aggr for aggr in aggregators if not aggr.startswith('dir')]
    model = nn.DGNConv(in_size, out_size, aggregators_non_eig, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e)