"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "dcb9070bc28401403d55b8c2097ea54a67e52ddd"
Unverified Commit d6eecf90 authored by Mufei Li's avatar Mufei Li Committed by GitHub
Browse files

[NN] TransE and TransR (#3530)



* Update

* Update

* Update

* Update

* Update

* CI

* CI

* CI
Co-authored-by: default avatarJinjing Zhou <VoVAllen@users.noreply.github.com>
parent c3103b62
...@@ -281,6 +281,20 @@ EdgePredictor ...@@ -281,6 +281,20 @@ EdgePredictor
:members: forward, reset_parameters :members: forward, reset_parameters
:show-inheritance: :show-inheritance:
TransE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: dgl.nn.pytorch.link.TransE
:members: rel_emb, forward, reset_parameters
:show-inheritance:
TransR
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: dgl.nn.pytorch.link.TransR
:members: rel_emb, rel_project, forward, reset_parameters
:show-inheritance:
Heterogeneous Graph Convolution Module Heterogeneous Graph Convolution Module
---------------------------------------- ----------------------------------------
......
"""Package for pytorch-specific NN modules.""" """Package for pytorch-specific NN modules."""
from .conv import * from .conv import *
from .explain import * from .explain import *
from .link import *
from .glob import * from .glob import *
from .softmax import * from .softmax import *
from .factory import * from .factory import *
from .hetero import * from .hetero import *
from .utils import Sequential, WeightBasis, JumpingKnowledge from .utils import Sequential, WeightBasis, JumpingKnowledge
from .sparse_emb import NodeEmbedding from .sparse_emb import NodeEmbedding
from .link import *
"""Torch modules for link prediction/knowledge graph completion."""
from .edgepred import EdgePredictor
from .transe import TransE
from .transr import TransR
"""Torch modules for link prediction.""" """Predictor for edges in homogeneous graphs."""
# pylint: disable= no-member, arguments-differ, invalid-name, W0235 # pylint: disable= no-member, arguments-differ, invalid-name, W0235
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
__all__ = ['EdgePredictor']
class EdgePredictor(nn.Module): class EdgePredictor(nn.Module):
r""" r"""
......
"""TransE."""
# pylint: disable= no-member, arguments-differ, invalid-name, W0235
import torch
import torch.nn as nn
class TransE(nn.Module):
r"""
Description
-----------
Similarity measure introduced in `Translating Embeddings for Modeling Multi-relational Data
<https://papers.nips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html>`__.
Mathematically, it is defined as follows:
.. math::
- {\| h + r - t \|}_p
where :math:`h` is the head embedding, :math:`r` is the relation embedding, and
:math:`t` is the tail embedding.
Parameters
----------
num_rels : int
Number of relation types.
feats : int
Embedding size.
p : int, optional
The p to use for Lp norm, which can be 1 or 2.
Attributes
----------
rel_emb : torch.nn.Embedding
The learnable relation type embedding.
Examples
--------
>>> import dgl
>>> import torch as th
>>> from dgl.nn import TransE
>>> # input features
>>> num_nodes = 10
>>> num_edges = 30
>>> num_rels = 3
>>> feats = 4
>>> scorer = TransE(num_rels=num_rels, feats=feats)
>>> g = dgl.rand_graph(num_nodes=num_nodes, num_edges=num_edges)
>>> src, dst = g.edges()
>>> h = th.randn(num_nodes, feats)
>>> h_head = h[src]
>>> h_tail = h[dst]
>>> # Randomly initialize edge relation types for demonstration
>>> rels = th.randint(low=0, high=num_rels, size=(num_edges,))
>>> scorer(h_head, h_tail, rels).shape
torch.Size([30])
"""
def __init__(self, num_rels, feats, p=1):
super(TransE, self).__init__()
self.rel_emb = nn.Embedding(num_rels, feats)
self.p = p
def reset_parameters(self):
r"""
Description
-----------
Reinitialize learnable parameters.
"""
self.rel_emb.reset_parameters()
def forward(self, h_head, h_tail, rels):
r"""
Description
-----------
Score triples.
Parameters
----------
h_head : torch.Tensor
Head entity features. The tensor is of shape :math:`(E, D)`, where
:math:`E` is the number of triples, and :math:`D` is the feature size.
h_tail : torch.Tensor
Tail entity features. The tensor is of shape :math:`(E, D)`, where
:math:`E` is the number of triples, and :math:`D` is the feature size.
rels : torch.Tensor
Relation types. It is a LongTensor of shape :math:`(E)`, where
:math:`E` is the number of triples.
Returns
-------
torch.Tensor
The triple scores. The tensor is of shape :math:`(E)`.
"""
h_rel = self.rel_emb(rels)
return - torch.norm(h_head + h_rel - h_tail, p=self.p, dim=-1)
"""TransR."""
# pylint: disable= no-member, arguments-differ, invalid-name, W0235
import torch
import torch.nn as nn
class TransR(nn.Module):
r"""
Description
-----------
Similarity measure introduced in
`Learning entity and relation embeddings for knowledge graph completion
<https://ojs.aaai.org/index.php/AAAI/article/view/9491>`__. Mathematically,
it is defined as follows:
.. math::
- {\| M_r h + r - M_r t \|}_p
where :math:`M_r` is a relation-specific projection matrix, :math:`h` is the
head embedding, :math:`r` is the relation embedding, and :math:`t` is the tail embedding.
Parameters
----------
num_rels : int
Number of relation types.
rfeats : int
Relation embedding size.
nfeats : int
Entity embedding size.
p : int, optional
The p to use for Lp norm, which can be 1 or 2.
Attributes
----------
rel_emb : torch.nn.Embedding
The learnable relation type embedding.
rel_project : torch.nn.Embedding
The learnable relation-type-specific projection.
Examples
--------
>>> import dgl
>>> import torch as th
>>> from dgl.nn import TransR
>>> # input features
>>> num_nodes = 10
>>> num_edges = 30
>>> num_rels = 3
>>> feats = 4
>>> scorer = TransE(num_rels=num_rels, rfeats=2, nfeats=feats)
>>> g = dgl.rand_graph(num_nodes=num_nodes, num_edges=num_edges)
>>> src, dst = g.edges()
>>> h = th.randn(num_nodes, feats)
>>> h_head = h[src]
>>> h_tail = h[dst]
>>> # Randomly initialize edge relation types for demonstration
>>> rels = th.randint(low=0, high=num_rels, size=(num_edges,))
>>> scorer(h_head, h_tail, rels).shape
torch.Size([30])
"""
def __init__(self, num_rels, rfeats, nfeats, p=1):
super(TransR, self).__init__()
self.rel_emb = nn.Embedding(num_rels, rfeats)
self.rel_project = nn.Embedding(num_rels, nfeats * rfeats)
self.rfeats = rfeats
self.nfeats = nfeats
self.p = p
def reset_parameters(self):
r"""
Description
-----------
Reinitialize learnable parameters.
"""
self.rel_emb.reset_parameters()
self.rel_project.reset_parameters()
def forward(self, h_head, h_tail, rels):
r"""
Score triples.
Parameters
----------
h_head : torch.Tensor
Head entity features. The tensor is of shape :math:`(E, D)`, where
:math:`E` is the number of triples, and :math:`D` is the feature size.
h_tail : torch.Tensor
Tail entity features. The tensor is of shape :math:`(E, D)`, where
:math:`E` is the number of triples, and :math:`D` is the feature size.
rels : torch.Tensor
Relation types. It is a LongTensor of shape :math:`(E)`, where
:math:`E` is the number of triples.
Returns
-------
torch.Tensor
The triple scores. The tensor is of shape :math:`(E)`.
"""
h_rel = self.rel_emb(rels)
proj_rel = self.rel_project(rels).reshape(-1, self.nfeats, self.rfeats)
h_head = (h_head.unsqueeze(1) @ proj_rel).squeeze(1)
h_tail = (h_tail.unsqueeze(1) @ proj_rel).squeeze(1)
return - torch.norm(h_head + h_rel - h_tail, p=self.p, dim=-1)
...@@ -1323,6 +1323,26 @@ def test_edge_predictor(op): ...@@ -1323,6 +1323,26 @@ def test_edge_predictor(op):
pred = nn.EdgePredictor(op, in_feats, out_feats, bias=True).to(ctx) pred = nn.EdgePredictor(op, in_feats, out_feats, bias=True).to(ctx)
assert pred(h_src, h_dst).shape == (num_pairs, out_feats) assert pred(h_src, h_dst).shape == (num_pairs, out_feats)
def test_ke_score_funcs():
ctx = F.ctx()
num_edges = 30
num_rels = 3
nfeats = 4
h_src = th.randn((num_edges, nfeats)).to(ctx)
h_dst = th.randn((num_edges, nfeats)).to(ctx)
rels = th.randint(low=0, high=num_rels, size=(num_edges,)).to(ctx)
score_func = nn.TransE(num_rels=num_rels, feats=nfeats).to(ctx)
score_func.reset_parameters()
score_func(h_src, h_dst, rels).shape == (num_edges)
score_func = nn.TransR(num_rels=num_rels, rfeats=nfeats - 1, nfeats=nfeats).to(ctx)
score_func.reset_parameters()
score_func(h_src, h_dst, rels).shape == (num_edges)
def test_twirls(): def test_twirls():
g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
feat = th.ones(6, 10) feat = th.ones(6, 10)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment