"docs/en/conf.py" did not exist on "f31f1cdb8ee6671a512d6756d2f0dfd68d04272f"
utils.py 9.14 KB
Newer Older
Linfang He's avatar
Linfang He committed
1
2
3
4
5
6
7
import argparse
from collections import defaultdict

import networkx as nx
import numpy as np
from gensim.models.keyedvectors import Vocab
from six import iteritems
8
from sklearn.metrics import auc, f1_score, precision_recall_curve, roc_auc_score
Linfang He's avatar
Linfang He committed
9
10
import torch

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import time
import multiprocessing
from functools import partial, reduce, wraps

import torch.multiprocessing as mp
from _thread import start_new_thread
import traceback


def thread_wrapped_func(func):
    """
    Wraps a process entry point to make it work with OpenMP.
    """

    @wraps(func)
    def decorated_function(*args, **kwargs):
        queue = mp.Queue()

        def _queue_result():
            exception, trace, res = None, None, None
            try:
                res = func(*args, **kwargs)
            except Exception as e:
                exception = e
                trace = traceback.format_exc()
            queue.put((res, exception, trace))

        start_new_thread(_queue_result, ())
        result, exception, trace = queue.get()
        if exception is None:
            return result
        else:
            assert isinstance(exception, Exception)
            raise exception.__class__(trace)

    return decorated_function


Linfang He's avatar
Linfang He committed
49
50
51
def parse_args():
    parser = argparse.ArgumentParser()

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    parser.add_argument(
        "--input", type=str, default="data/amazon", help="Input dataset path"
    )

    parser.add_argument(
        "--features", type=str, default=None, help="Input node features"
    )

    parser.add_argument(
        "--epoch", type=int, default=100, help="Number of epoch. Default is 100."
    )

    parser.add_argument(
        "--batch-size",
        type=int,
        default=64,
        help="Number of batch_size. Default is 64.",
    )

    parser.add_argument(
        "--eval-type", type=str, default="all", help="The edge type(s) for evaluation."
    )

    parser.add_argument(
        "--schema",
        type=str,
        default=None,
        help="The metapath schema (e.g., U-I-U,I-U-I).",
    )

    parser.add_argument(
        "--dimensions",
        type=int,
        default=200,
        help="Number of dimensions. Default is 200.",
    )

    parser.add_argument(
        "--edge-dim",
        type=int,
        default=10,
        help="Number of edge embedding dimensions. Default is 10.",
    )

    parser.add_argument(
        "--att-dim",
        type=int,
        default=20,
        help="Number of attention dimensions. Default is 20.",
    )

    parser.add_argument(
        "--walk-length",
        type=int,
        default=10,
        help="Length of walk per source. Default is 10.",
    )

    parser.add_argument(
        "--num-walks",
        type=int,
        default=20,
        help="Number of walks per source. Default is 20.",
    )

    parser.add_argument(
        "--window-size",
        type=int,
        default=5,
        help="Context size for optimization. Default is 5.",
    )

    parser.add_argument(
        "--negative-samples",
        type=int,
        default=5,
        help="Negative samples for optimization. Default is 5.",
    )

    parser.add_argument(
        "--neighbor-samples",
        type=int,
        default=10,
        help="Neighbor samples for aggregation. Default is 10.",
    )

    parser.add_argument(
        "--patience", type=int, default=5, help="Early stopping patience. Default is 5."
    )

    parser.add_argument(
        "--gpu", type=str, default=None, help="Comma separated list of GPU device IDs."
    )

    parser.add_argument(
        "--workers", type=int, default=4, help="Number of workers.",
    )

Linfang He's avatar
Linfang He committed
150
151
152
153
154
    return parser.parse_args()


# for each line, the data is [edge_type, node, node]
def load_training_data(f_name):
155
    print("We are loading data from:", f_name)
Linfang He's avatar
Linfang He committed
156
157
    edge_data_by_type = dict()
    all_nodes = list()
158
    with open(f_name, "r") as f:
Linfang He's avatar
Linfang He committed
159
        for line in f:
160
            words = line[:-1].split(" ")  # line[-1] == '\n'
Linfang He's avatar
Linfang He committed
161
162
163
164
165
166
167
            if words[0] not in edge_data_by_type:
                edge_data_by_type[words[0]] = list()
            x, y = words[1], words[2]
            edge_data_by_type[words[0]].append((x, y))
            all_nodes.append(x)
            all_nodes.append(y)
    all_nodes = list(set(all_nodes))
168
    print("Total training nodes: " + str(len(all_nodes)))
Linfang He's avatar
Linfang He committed
169
170
171
172
173
    return edge_data_by_type


# for each line, the data is [edge_type, node, node, true_or_false]
def load_testing_data(f_name):
174
    print("We are loading data from:", f_name)
Linfang He's avatar
Linfang He committed
175
176
177
178
    true_edge_data_by_type = dict()
    false_edge_data_by_type = dict()
    all_edges = list()
    all_nodes = list()
179
    with open(f_name, "r") as f:
Linfang He's avatar
Linfang He committed
180
        for line in f:
181
            words = line[:-1].split(" ")
Linfang He's avatar
Linfang He committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
            x, y = words[1], words[2]
            if int(words[3]) == 1:
                if words[0] not in true_edge_data_by_type:
                    true_edge_data_by_type[words[0]] = list()
                true_edge_data_by_type[words[0]].append((x, y))
            else:
                if words[0] not in false_edge_data_by_type:
                    false_edge_data_by_type[words[0]] = list()
                false_edge_data_by_type[words[0]].append((x, y))
            all_nodes.append(x)
            all_nodes.append(y)
    all_nodes = list(set(all_nodes))
    return true_edge_data_by_type, false_edge_data_by_type


def load_node_type(f_name):
198
    print("We are loading node type from:", f_name)
Linfang He's avatar
Linfang He committed
199
    node_type = {}
200
    with open(f_name, "r") as f:
Linfang He's avatar
Linfang He committed
201
202
203
204
205
206
        for line in f:
            items = line.strip().split()
            node_type[items[0]] = items[1]
    return node_type


207
208
209
210
211
212
213
214
215
216
217
218
219
220
def generate_pairs_parallel(walks, skip_window=None, layer_id=None):
    pairs = []
    for walk in walks:
        walk = walk.tolist()
        for i in range(len(walk)):
            for j in range(1, skip_window + 1):
                if i - j >= 0:
                    pairs.append((walk[i], walk[i - j], layer_id))
                if i + j < len(walk):
                    pairs.append((walk[i], walk[i + j], layer_id))
    return pairs


def generate_pairs(all_walks, window_size, num_workers):
Linfang He's avatar
Linfang He committed
221
    # for each node, choose the first neighbor and second neighbor of it to form pairs
222
223
224
225
226
227
    # Get all worker processes
    start_time = time.time()
    print("We are generating pairs with {} cores.".format(num_workers))

    # Start all worker processes
    pool = multiprocessing.Pool(processes=num_workers)
Linfang He's avatar
Linfang He committed
228
229
230
    pairs = []
    skip_window = window_size // 2
    for layer_id, walks in enumerate(all_walks):
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        block_num = len(walks) // num_workers
        if block_num > 0:
            walks_list = [
                walks[i * block_num : min((i + 1) * block_num, len(walks))]
                for i in range(num_workers)
            ]
        else:
            walks_list = [walks]
        tmp_result = pool.map(
            partial(
                generate_pairs_parallel, skip_window=skip_window, layer_id=layer_id
            ),
            walks_list,
        )
        pairs += reduce(lambda x, y: x + y, tmp_result)

    pool.close()
    end_time = time.time()
    print("Generate pairs end, use {}s.".format(end_time - start_time))
    return np.array([list(pair) for pair in set(pairs)])

Linfang He's avatar
Linfang He committed
252
253
254
255
256
257

def generate_vocab(network_data):
    nodes, index2word = [], []
    for edge_type in network_data:
        node1, node2 = zip(*network_data[edge_type])
        index2word = index2word + list(node1) + list(node2)
258

Linfang He's avatar
Linfang He committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    index2word = list(set(index2word))
    vocab = {}
    i = 0
    for word in index2word:
        vocab[word] = i
        i = i + 1

    for edge_type in network_data:
        node1, node2 = zip(*network_data[edge_type])
        tmp_nodes = list(set(list(node1) + list(node2)))
        tmp_nodes = [vocab[word] for word in tmp_nodes]
        nodes.append(tmp_nodes)

    return index2word, vocab, nodes


275
276
def get_score(local_model, edge):
    node1, node2 = str(edge[0]), str(edge[1])
Linfang He's avatar
Linfang He committed
277
278
279
    try:
        vector1 = local_model[node1]
        vector2 = local_model[node2]
280
281
282
        return np.dot(vector1, vector2) / (
            np.linalg.norm(vector1) * np.linalg.norm(vector2)
        )
Linfang He's avatar
Linfang He committed
283
284
285
286
    except Exception as e:
        pass


287
def evaluate(model, true_edges, false_edges, num_workers):
Linfang He's avatar
Linfang He committed
288
289
290
    true_list = list()
    prediction_list = list()
    true_num = 0
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

    # Start all worker processes
    pool = multiprocessing.Pool(processes=num_workers)
    tmp_true_score_list = pool.map(partial(get_score, model), true_edges)
    tmp_false_score_list = pool.map(partial(get_score, model), false_edges)
    pool.close()

    prediction_list += [
        tmp_score for tmp_score in tmp_true_score_list if tmp_score is not None
    ]
    true_num = len(prediction_list)
    true_list += [1] * true_num

    prediction_list += [
        tmp_score for tmp_score in tmp_false_score_list if tmp_score is not None
    ]
    true_list += [0] * (len(prediction_list) - true_num)
Linfang He's avatar
Linfang He committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    sorted_pred = prediction_list[:]
    sorted_pred.sort()
    threshold = sorted_pred[-true_num]

    y_pred = np.zeros(len(prediction_list), dtype=np.int32)
    for i in range(len(prediction_list)):
        if prediction_list[i] >= threshold:
            y_pred[i] = 1

    y_true = np.array(true_list)
    y_scores = np.array(prediction_list)
    ps, rs, _ = precision_recall_curve(y_true, y_scores)
    return roc_auc_score(y_true, y_scores), f1_score(y_true, y_pred), auc(rs, ps)