"server/vscode:/vscode.git/clone" did not exist on "083c2de9f83c6070116a386d5c87e7b6c7538313"
utils.py 6.71 KB
Newer Older
Linfang He's avatar
Linfang He committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
from collections import defaultdict

import networkx as nx
import numpy as np
from gensim.models.keyedvectors import Vocab
from six import iteritems
from sklearn.metrics import (auc, f1_score, precision_recall_curve,
                             roc_auc_score)
import torch

def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument('--input', type=str, default='data/amazon',
                        help='Input dataset path')
    
    parser.add_argument('--features', type=str, default=None,
                        help='Input node features')

    parser.add_argument('--epoch', type=int, default=100,
                        help='Number of epoch. Default is 100.')

    parser.add_argument('--batch-size', type=int, default=64,
                        help='Number of batch_size. Default is 64.')

    parser.add_argument('--eval-type', type=str, default='all',
                        help='The edge type(s) for evaluation.')
    
    parser.add_argument('--schema', type=str, default=None,
                        help='The metapath schema (e.g., U-I-U,I-U-I).')

    parser.add_argument('--dimensions', type=int, default=200,
                        help='Number of dimensions. Default is 200.')

    parser.add_argument('--edge-dim', type=int, default=10,
                        help='Number of edge embedding dimensions. Default is 10.')
    
    parser.add_argument('--att-dim', type=int, default=20,
                        help='Number of attention dimensions. Default is 20.')

    parser.add_argument('--walk-length', type=int, default=10,
                        help='Length of walk per source. Default is 10.')

    parser.add_argument('--num-walks', type=int, default=20,
                        help='Number of walks per source. Default is 20.')

    parser.add_argument('--window-size', type=int, default=5,
                        help='Context size for optimization. Default is 5.')
    
    parser.add_argument('--negative-samples', type=int, default=5,
                        help='Negative samples for optimization. Default is 5.')
    
    parser.add_argument('--neighbor-samples', type=int, default=10,
                        help='Neighbor samples for aggregation. Default is 10.')

    parser.add_argument('--patience', type=int, default=5,
                        help='Early stopping patience. Default is 5.')
    
    return parser.parse_args()


# for each line, the data is [edge_type, node, node]
def load_training_data(f_name):
    print('We are loading data from:', f_name)
    edge_data_by_type = dict()
    all_nodes = list()
    with open(f_name, 'r') as f:
        for line in f:
            words = line[:-1].split(' ')  # line[-1] == '\n'
            if words[0] not in edge_data_by_type:
                edge_data_by_type[words[0]] = list()
            x, y = words[1], words[2]
            edge_data_by_type[words[0]].append((x, y))
            all_nodes.append(x)
            all_nodes.append(y)
    all_nodes = list(set(all_nodes))
    print('Total training nodes: ' + str(len(all_nodes)))
    return edge_data_by_type


# for each line, the data is [edge_type, node, node, true_or_false]
def load_testing_data(f_name):
    print('We are loading data from:', f_name)
    true_edge_data_by_type = dict()
    false_edge_data_by_type = dict()
    all_edges = list()
    all_nodes = list()
    with open(f_name, 'r') as f:
        for line in f:
            words = line[:-1].split(' ')
            x, y = words[1], words[2]
            if int(words[3]) == 1:
                if words[0] not in true_edge_data_by_type:
                    true_edge_data_by_type[words[0]] = list()
                true_edge_data_by_type[words[0]].append((x, y))
            else:
                if words[0] not in false_edge_data_by_type:
                    false_edge_data_by_type[words[0]] = list()
                false_edge_data_by_type[words[0]].append((x, y))
            all_nodes.append(x)
            all_nodes.append(y)
    all_nodes = list(set(all_nodes))
    return true_edge_data_by_type, false_edge_data_by_type


def load_node_type(f_name):
    print('We are loading node type from:', f_name)
    node_type = {}
    with open(f_name, 'r') as f:
        for line in f:
            items = line.strip().split()
            node_type[items[0]] = items[1]
    return node_type


def generate_pairs(all_walks, window_size):
    # for each node, choose the first neighbor and second neighbor of it to form pairs
    pairs = []
    skip_window = window_size // 2
    for layer_id, walks in enumerate(all_walks):
        for walk in walks:
            for i in range(len(walk)):
                for j in range(1, skip_window + 1):
                    if i - j >= 0:
                        pairs.append((walk[i], walk[i-j], layer_id))
                    if i + j < len(walk):
                        pairs.append((walk[i], walk[i+j], layer_id))
    return pairs

def generate_vocab(network_data):
    nodes, index2word = [], []
    for edge_type in network_data:
        node1, node2 = zip(*network_data[edge_type])
        index2word = index2word + list(node1) + list(node2)
    
    index2word = list(set(index2word))
    vocab = {}
    i = 0
    for word in index2word:
        vocab[word] = i
        i = i + 1

    for edge_type in network_data:
        node1, node2 = zip(*network_data[edge_type])
        tmp_nodes = list(set(list(node1) + list(node2)))
        tmp_nodes = [vocab[word] for word in tmp_nodes]
        nodes.append(tmp_nodes)

    return index2word, vocab, nodes


def get_score(local_model, node1, node2):
    try:
        vector1 = local_model[node1]
        vector2 = local_model[node2]
        return np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2))
    except Exception as e:
        pass


def evaluate(model, true_edges, false_edges):
    true_list = list()
    prediction_list = list()
    true_num = 0
    for edge in true_edges:
        tmp_score = get_score(model, str(edge[0]), str(edge[1]))
        if tmp_score is not None:
            true_list.append(1)
            prediction_list.append(tmp_score)
            true_num += 1

    for edge in false_edges:
        tmp_score = get_score(model, str(edge[0]), str(edge[1]))
        if tmp_score is not None:
            true_list.append(0)
            prediction_list.append(tmp_score)

    sorted_pred = prediction_list[:]
    sorted_pred.sort()
    threshold = sorted_pred[-true_num]

    y_pred = np.zeros(len(prediction_list), dtype=np.int32)
    for i in range(len(prediction_list)):
        if prediction_list[i] >= threshold:
            y_pred[i] = 1

    y_true = np.array(true_list)
    y_scores = np.array(prediction_list)
    ps, rs, _ = precision_recall_curve(y_true, y_scores)
    return roc_auc_score(y_true, y_scores), f1_score(y_true, y_pred), auc(rs, ps)