gcn_mp.py 6.71 KB
Newer Older
VoVAllen's avatar
VoVAllen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import time
import math
import numpy as np
import networkx as nx
import tensorflow as tf
from dgl import DGLGraph
import dgl.function as fn
from dgl.data import register_data_args, load_data
from tensorflow.keras import layers

def gcn_msg(edge):
    msg = edge.src['h'] * edge.src['norm']
    return {'m': msg}


def gcn_reduce(node):
    accum = tf.reduce_sum(node.mailbox['m'], 1) * node.data['norm']
    return {'h': accum}


class GCNLayer(layers.Layer):
    def __init__(self,
                 g,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 bias=True):
        super(GCNLayer, self).__init__()
        self.g = g

        w_init = tf.random_normal_initializer()
        self.weight = tf.Variable(initial_value=w_init(shape=(in_feats, out_feats),
                                                       dtype='float32'),
                                  trainable=True)
        if dropout:
            self.dropout = layers.Dropout(rate=dropout)
        else:
            self.dropout = 0.
        if bias:
            b_init = tf.zeros_initializer()
            self.bias = tf.Variable(initial_value=b_init(shape=(out_feats,),
                                                         dtype='float32'),
                                    trainable=True)
        else:
            self.bias = None
        self.activation = activation

    def call(self, h):
        if self.dropout:
            h = self.dropout(h)
        self.g.ndata['h'] = tf.matmul(h, self.weight)
        self.g.update_all(gcn_msg, gcn_reduce)
        h = self.g.ndata['h']
        if self.bias is not None:
            h = h + self.bias
        if self.activation:
            h = self.activation(h)
        return h


class GCN(layers.Layer):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.layers = []

        # input layer
        self.layers.append(
            GCNLayer(g, in_feats, n_hidden, activation, dropout))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(
                GCNLayer(g, n_hidden, n_hidden, activation, dropout))
        # output layer
        self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout))

    def call(self, features):
        h = features
        for layer in self.layers:
            h = layer(h)
        return h


def evaluate(model, features, labels, mask):
    logits = model(features, training=False)
    logits = logits[mask]
    labels = labels[mask]
    indices = tf.math.argmax(logits, axis=1)
    acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
    return acc.numpy().item()


def main(args):
    # load and preprocess dataset
    data = load_data(args)

    if args.gpu < 0:
        device = "/cpu:0"
    else:
        device = "/gpu:{}".format(args.gpu)

    with tf.device(device):
        features = tf.convert_to_tensor(data.features, dtype=tf.float32)
        labels = tf.convert_to_tensor(data.labels, dtype=tf.int64)
        train_mask = tf.convert_to_tensor(data.train_mask, dtype=tf.bool)
        val_mask = tf.convert_to_tensor(data.val_mask, dtype=tf.bool)
        test_mask = tf.convert_to_tensor(data.test_mask, dtype=tf.bool)
        in_feats = features.shape[1]
        n_classes = data.num_labels
        n_edges = data.graph.number_of_edges()
        print("""----Data statistics------'
        #Edges %d
        #Classes %d
        #Train samples %d
        #Val samples %d
        #Test samples %d""" %
              (n_edges, n_classes,
               train_mask.numpy().sum(),
               val_mask.numpy().sum(),
               test_mask.numpy().sum()))

        # graph preprocess and calculate normalization factor
        g = data.graph
        g.remove_edges_from(nx.selfloop_edges(g))
        g = DGLGraph(g)
        # # add self loop
        g.add_edges(g.nodes(), g.nodes())
        n_edges = g.number_of_edges()
        # # normalization
        degs = tf.cast(tf.identity(g.in_degrees()), dtype=tf.float32)
        norm = tf.math.pow(degs, -0.5)
        norm = tf.where(tf.math.is_inf(norm), tf.zeros_like(norm), norm)

        g.ndata['norm'] = tf.expand_dims(norm, -1)

        # create GCN model
        model = GCN(g,
                    in_feats,
                    args.n_hidden,
                    n_classes,
                    args.n_layers,
                    tf.nn.relu,
                    args.dropout)

        optimizer = tf.keras.optimizers.Adam(
            learning_rate=args.lr, decay=args.weight_decay)

        loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True)
        # initialize graph
        dur = []
        for epoch in range(args.n_epochs):
            if epoch >= 3:
                t0 = time.time()
            # forward
            with tf.GradientTape() as tape:
                logits = model(features)
                loss_value = loss_fcn(labels[train_mask], logits[train_mask])

                grads = tape.gradient(loss_value, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))

            if epoch >= 3:
                dur.append(time.time() - t0)

            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss_value.numpy().item(),
                                                 acc, n_edges / np.mean(dur) / 1000))                                        

        acc = evaluate(model, features, labels, test_mask)
        print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)