import argparse import time import math import numpy as np import networkx as nx import tensorflow as tf from dgl import DGLGraph import dgl.function as fn from dgl.data import register_data_args, load_data from tensorflow.keras import layers def gcn_msg(edge): msg = edge.src['h'] * edge.src['norm'] return {'m': msg} def gcn_reduce(node): accum = tf.reduce_sum(node.mailbox['m'], 1) * node.data['norm'] return {'h': accum} class GCNLayer(layers.Layer): def __init__(self, g, in_feats, out_feats, activation, dropout, bias=True): super(GCNLayer, self).__init__() self.g = g w_init = tf.random_normal_initializer() self.weight = tf.Variable(initial_value=w_init(shape=(in_feats, out_feats), dtype='float32'), trainable=True) if dropout: self.dropout = layers.Dropout(rate=dropout) else: self.dropout = 0. if bias: b_init = tf.zeros_initializer() self.bias = tf.Variable(initial_value=b_init(shape=(out_feats,), dtype='float32'), trainable=True) else: self.bias = None self.activation = activation def call(self, h): if self.dropout: h = self.dropout(h) self.g.ndata['h'] = tf.matmul(h, self.weight) self.g.update_all(gcn_msg, gcn_reduce) h = self.g.ndata['h'] if self.bias is not None: h = h + self.bias if self.activation: h = self.activation(h) return h class GCN(layers.Layer): def __init__(self, g, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super(GCN, self).__init__() self.layers = [] # input layer self.layers.append( GCNLayer(g, in_feats, n_hidden, activation, dropout)) # hidden layers for i in range(n_layers - 1): self.layers.append( GCNLayer(g, n_hidden, n_hidden, activation, dropout)) # output layer self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout)) def call(self, features): h = features for layer in self.layers: h = layer(h) return h def evaluate(model, features, labels, mask): logits = model(features, training=False) logits = logits[mask] labels = labels[mask] indices = tf.math.argmax(logits, axis=1) acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32)) return acc.numpy().item() def main(args): # load and preprocess dataset data = load_data(args) if args.gpu < 0: device = "/cpu:0" else: device = "/gpu:{}".format(args.gpu) with tf.device(device): features = tf.convert_to_tensor(data.features, dtype=tf.float32) labels = tf.convert_to_tensor(data.labels, dtype=tf.int64) train_mask = tf.convert_to_tensor(data.train_mask, dtype=tf.bool) val_mask = tf.convert_to_tensor(data.val_mask, dtype=tf.bool) test_mask = tf.convert_to_tensor(data.test_mask, dtype=tf.bool) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.numpy().sum(), val_mask.numpy().sum(), test_mask.numpy().sum())) # graph preprocess and calculate normalization factor g = data.graph g.remove_edges_from(nx.selfloop_edges(g)) g = DGLGraph(g) # # add self loop g.add_edges(g.nodes(), g.nodes()) n_edges = g.number_of_edges() # # normalization degs = tf.cast(tf.identity(g.in_degrees()), dtype=tf.float32) norm = tf.math.pow(degs, -0.5) norm = tf.where(tf.math.is_inf(norm), tf.zeros_like(norm), norm) g.ndata['norm'] = tf.expand_dims(norm, -1) # create GCN model model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, tf.nn.relu, args.dropout) optimizer = tf.keras.optimizers.Adam( learning_rate=args.lr, decay=args.weight_decay) loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward with tf.GradientTape() as tape: logits = model(features) loss_value = loss_fcn(labels[train_mask], logits[train_mask]) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) if epoch >= 3: dur.append(time.time() - t0) acc = evaluate(model, features, labels, val_mask) print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss_value.numpy().item(), acc, n_edges / np.mean(dur) / 1000)) acc = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN') register_data_args(parser) parser.add_argument("--dropout", type=float, default=0.5, help="dropout probability") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument("--n-epochs", type=int, default=200, help="number of training epochs") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden gcn units") parser.add_argument("--n-layers", type=int, default=1, help="number of hidden gcn layers") parser.add_argument("--weight-decay", type=float, default=5e-4, help="Weight for L2 loss") args = parser.parse_args() print(args) main(args)