test_dist_graph_store.py 13.1 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
12
13
14
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
from dgl.graph_index import create_graph_index
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, load_partition_book, node_split, edge_split
16
17
from dgl.distributed import SparseAdagrad, SparseNodeEmbedding
from numpy.testing import assert_almost_equal
18
import backend as F
19
import math
20
21
22
import unittest
import pickle

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

52
53
54
55
56
def create_random_graph(n):
    arr = (spsp.random(n, n, density=0.001, format='coo') != 0).astype(np.int64)
    ig = create_graph_index(arr, readonly=True)
    return dgl.DGLGraph(ig)

57
def run_server(graph_name, server_id, num_clients, shared_mem):
58
    g = DistGraphServer(server_id, "kv_ip_config.txt", num_clients,
59
60
                        '/tmp/dist_graph/{}.json'.format(graph_name),
                        disable_shared_mem=not shared_mem)
61
62
63
    print('start server', server_id)
    g.start()

64
65
66
def emb_init(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

67
68
def run_client(graph_name, part_id, num_nodes, num_edges):
    time.sleep(5)
69
70
    gpb, graph_name = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                          part_id, None)
71
    g = DistGraph("kv_ip_config.txt", graph_name, gpb=gpb)
72
    check_dist_graph(g, num_nodes, num_edges)
73

74
def check_dist_graph(g, num_nodes, num_edges):
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
    g.init_ndata('test1', new_shape, F.int32)
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # Test init edge data
    new_shape = (g.number_of_edges(), 2)
    g.init_edata('test1', new_shape, F.int32)
    feats = g.edata['test1'][eids]
    assert np.all(F.asnumpy(feats) == 0)

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    # Test sparse emb
    try:
        new_shape = (g.number_of_nodes(), 1)
        emb = SparseNodeEmbedding(g, 'emb1', new_shape, emb_init)
        lr = 0.001
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats = emb(nids)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids), 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
        assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * -lr)
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))

        policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
        grad_sum = dgl.distributed.DistTensor(g, 'node:emb1_sum', policy)
        assert np.all(F.asnumpy(grad_sum[nids]) == np.ones((len(nids), 1)))
        assert np.all(F.asnumpy(grad_sum[rest]) == np.zeros((len(rest), 1)))

        emb = SparseNodeEmbedding(g, 'emb2', new_shape, emb_init)
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats1 = emb(nids)
            feats2 = emb(nids)
            feats = F.cat([feats1, feats2], 0)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids) * 2, 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
        assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * math.sqrt(2) * -lr)
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))
    except NotImplementedError as e:
        pass

144
145
146
147
148
149
150
151
152
153
154
155
156
157
    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

158
159
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
160
    nodes = node_split(selected_nodes, g.get_partition_book())
161
162
163
164
165
166
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

167
    # clean up
168
169
170
    if os.environ['DGL_DIST_MODE'] == 'distributed':
        dgl.distributed.shutdown_servers()
        dgl.distributed.finalize_client()
171
172
    print('end')

173
def check_server_client(shared_mem):
174
    prepare_dist()
175
176
177
178
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
179
    graph_name = 'dist_graph_test_2'
180
181
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
182
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
183
184
185
186

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
187
    ctx = mp.get_context('spawn')
188
    for serv_id in range(1):
189
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, 1, shared_mem))
190
191
192
193
194
195
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(1):
        print('start client', cli_id)
196
        p = ctx.Process(target=run_client, args=(graph_name, cli_id, g.number_of_nodes(),
197
                                                 g.number_of_edges()))
198
199
200
201
202
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
203
204
205
206

    for p in serv_ps:
        p.join()

207
208
    print('clients have terminated')

209
210
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_server_client():
211
    os.environ['DGL_DIST_MODE'] = 'distributed'
212
213
214
    check_server_client(True)
    check_server_client(False)

215
216
217
218
219
220
221
222
223
224
225
226
227
228
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_standalone():
    os.environ['DGL_DIST_MODE'] = 'standalone'
    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
    dist_g = DistGraph("kv_ip_config.txt", graph_name,
                  conf_file='/tmp/dist_graph/{}.json'.format(graph_name))
    check_dist_graph(dist_g, g.number_of_nodes(), g.number_of_edges())

229
def test_split():
230
    prepare_dist()
231
232
233
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
234
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
235
236
237
238
239
240

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    for i in range(num_parts):
241
        dgl.distributed.set_num_client(num_parts)
242
        part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
Da Zheng's avatar
Da Zheng committed
243
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
244
245
246
247
248
249
250
251
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
        nodes2 = node_split(node_mask, gpb, i)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

252
253
254
255
256
257
258
        dgl.distributed.set_num_client(num_parts * 2)
        nodes3 = node_split(node_mask, gpb, i * 2)
        nodes4 = node_split(node_mask, gpb, i * 2 + 1)
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

        dgl.distributed.set_num_client(num_parts)
Da Zheng's avatar
Da Zheng committed
259
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
260
261
262
263
264
265
266
267
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
        edges2 = edge_split(edge_mask, gpb, i)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        dgl.distributed.set_num_client(num_parts * 2)
        edges3 = edge_split(edge_mask, gpb, i * 2)
        edges4 = edge_split(edge_mask, gpb, i * 2 + 1)
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))

def test_split_even():
    prepare_dist()
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
    for i in range(num_parts):
        dgl.distributed.set_num_client(num_parts)
291
        part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes = node_split(node_mask, gpb, i, force_even=True)
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        nodes1 = node_split(node_mask, gpb, i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, i * 2 + 1, force_even=True)
        nodes3 = F.cat([nodes1, nodes2], 0)
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

        dgl.distributed.set_num_client(num_parts)
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges = edge_split(edge_mask, gpb, i, force_even=True)
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        edges1 = edge_split(edge_mask, gpb, i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, i * 2 + 1, force_even=True)
        edges3 = F.cat([edges1, edges2], 0)
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))

333
334
def prepare_dist():
    ip_config = open("kv_ip_config.txt", "w")
335
336
    ip_addr = get_local_usable_addr()
    ip_config.write('%s 1\n' % ip_addr)
337
338
    ip_config.close()

339
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
340
    os.makedirs('/tmp/dist_graph', exist_ok=True)
341
342
    test_split()
    test_split_even()
Da Zheng's avatar
Da Zheng committed
343
    test_server_client()
344
    test_standalone()