union_partition.cc 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*!
 *  Copyright (c) 2020 by Contributors
 * \file graph/transform/union_partition.cc
 * \brief Functions for partition, union multiple graphs.
 */
#include "../heterograph.h"
using namespace dgl::runtime;

namespace dgl {

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
HeteroGraphPtr JointUnionHeteroGraph(
  GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list has at least two graphs";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    uint64_t num_src_v = component_graphs[0]->NumVertices(src_vtype);
    uint64_t num_dst_v = component_graphs[0]->NumVertices(dst_vtype);
    HeteroGraphPtr rgptr = nullptr;

    // ALL = CSC | CSR | COO
27
28
29
    const dgl_format_code_t code =\
      component_graphs[0]->GetRelationGraph(etype)->GetAllowedFormats();

30
31
32
33
34
35
36
37
    // get common format
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      CHECK_EQ(num_src_v, component_graphs[i]->NumVertices(src_vtype)) << "Input graph[" << i <<
        "] should have same number of src vertices as input graph[0]";
      CHECK_EQ(num_dst_v, component_graphs[i]->NumVertices(dst_vtype)) << "Input graph[" << i <<
        "] should have same number of dst vertices as input graph[0]";

38
39
40
      const dgl_format_code_t curr_code = cg->GetRelationGraph(etype)->GetAllowedFormats();
      if (curr_code != code)
        LOG(FATAL) << "All components should have the same formats";
41
42
43
    }

    // prefer COO
44
    if (FORMAT_HAS_COO(code)) {
45
46
47
48
49
50
51
52
53
      std::vector<aten::COOMatrix> coos;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::COOMatrix coo = cg->GetCOOMatrix(etype);
        coos.push_back(coo);
      }

      aten::COOMatrix res = aten::UnionCoo(coos);
      rgptr = UnitGraph::CreateFromCOO(
54
55
          (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSR(code)) {
56
57
58
59
60
61
62
63
64
      std::vector<aten::CSRMatrix> csrs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csr = cg->GetCSRMatrix(etype);
        csrs.push_back(csr);
      }

      aten::CSRMatrix res = aten::UnionCsr(csrs);
      rgptr = UnitGraph::CreateFromCSR(
65
66
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSC(code)) {
67
68
69
70
71
72
73
74
75
76
      // CSR and CSC have the same storage format, i.e. CSRMatrix
      std::vector<aten::CSRMatrix> cscs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csc = cg->GetCSCMatrix(etype);
        cscs.push_back(csc);
      }

      aten::CSRMatrix res = aten::UnionCsr(cscs);
      rgptr = UnitGraph::CreateFromCSC(
77
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
78
79
80
81
82
83
84
85
86
87
    }

    rel_graphs[etype] = rgptr;
    num_nodes_per_type[src_vtype] = num_src_v;
    num_nodes_per_type[dst_vtype] = num_dst_v;
  }

  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
}

88
89
90
91
92
93
HeteroGraphPtr DisjointUnionHeteroGraph2(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list is empty";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);

94
95
96
97
98
99
100
101
  // Loop over all ntypes
  for (dgl_type_t vtype = 0; vtype < meta_graph->NumVertices(); ++vtype) {
    uint64_t offset = 0;
    for (const auto &cg : component_graphs)
      offset += cg->NumVertices(vtype);
    num_nodes_per_type[vtype] = offset;
  }

102
103
104
105
106
107
108
  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    HeteroGraphPtr rgptr = nullptr;

109
110
    const dgl_format_code_t code =\
      component_graphs[0]->GetRelationGraph(etype)->GetAllowedFormats();
111
    // do some preprocess
112
    for (const auto &cg : component_graphs) {
113
114
115
      const dgl_format_code_t cur_code = cg->GetRelationGraph(etype)->GetAllowedFormats();
      if (cur_code != code)
        LOG(FATAL) << "All components should have the same formats";
116
117
118
    }

    // prefer COO
119
    if (FORMAT_HAS_COO(code)) {
120
      std::vector<aten::COOMatrix> coos;
121
      for (const auto &cg : component_graphs) {
122
123
124
125
126
127
128
        aten::COOMatrix coo = cg->GetCOOMatrix(etype);
        coos.push_back(coo);
      }

      aten::COOMatrix res = aten::DisjointUnionCoo(coos);

      rgptr = UnitGraph::CreateFromCOO(
129
130
          (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSR(code)) {
131
      std::vector<aten::CSRMatrix> csrs;
132
      for (const auto &cg : component_graphs) {
133
134
135
136
137
138
139
        aten::CSRMatrix csr = cg->GetCSRMatrix(etype);
        csrs.push_back(csr);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(csrs);

      rgptr = UnitGraph::CreateFromCSR(
140
141
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSC(code)) {
142
      // CSR and CSC have the same storage format, i.e. CSRMatrix
143
      std::vector<aten::CSRMatrix> cscs;
144
      for (const auto &cg : component_graphs) {
145
146
147
148
149
150
        aten::CSRMatrix csc = cg->GetCSCMatrix(etype);
        cscs.push_back(csc);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(cscs);
      rgptr = UnitGraph::CreateFromCSC(
151
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    }
    rel_graphs[etype] = rgptr;
  }

  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
}

std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes2(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  CHECK_EQ(vertex_sizes->dtype.bits, 64) << "dtype of vertex_sizes should be int64";
  CHECK_EQ(edge_sizes->dtype.bits, 64) << "dtype of edge_sizes should be int64";
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;

  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
206
  auto code = batched_graph->GetRelationGraph(0)->GetAllowedFormats();
207

208
  if (FORMAT_HAS_COO(code)) {
209
210
211
212
213
214
215
216
217
218
219
220
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::COOMatrix coo = batched_graph->GetCOOMatrix(etype);
      auto res = aten::DisjointPartitionCooBySizes(coo,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
221
          (src_vtype == dst_vtype) ? 1 : 2, res[g], code);
222
223
224
        rel_graphs[g].push_back(rgptr);
      }
    }
225
  } else if (FORMAT_HAS_CSR(code)) {
226
227
228
229
230
231
232
233
234
235
236
237
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::CSRMatrix csr = batched_graph->GetCSRMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csr,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSR(
238
          (src_vtype == dst_vtype) ? 1 : 2, res[g], code);
239
240
241
        rel_graphs[g].push_back(rgptr);
      }
    }
242
  } else if (FORMAT_HAS_CSC(code)) {
243
244
245
246
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
247
      // CSR and CSC have the same storage format, i.e. CSRMatrix
248
249
250
251
252
253
254
255
      aten::CSRMatrix csc = batched_graph->GetCSCMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csc,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[dst_vtype],
                                                   vertex_cumsum[src_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSC(
256
          (src_vtype == dst_vtype) ? 1 : 2, res[g], code);
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        rel_graphs[g].push_back(rgptr);
      }
    }
  }

  std::vector<HeteroGraphPtr> rst;
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
  for (uint64_t g = 0; g < batch_size; ++g) {
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
  }
  return rst;
}

272
template <class IdType>
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;
  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    EdgeArray edges = batched_graph->Edges(etype);
322
323
    const IdType* edges_src_data = static_cast<const IdType*>(edges.src->data);
    const IdType* edges_dst_data = static_cast<const IdType*>(edges.dst->data);
324
325
    // Loop over all graphs to be unbatched
    for (uint64_t g = 0; g < batch_size; ++g) {
326
      std::vector<IdType> result_src, result_dst;
327
328
329
330
331
332
333
      // Loop over the chunk of edges for the specified graph and edge type
      for (uint64_t e = edge_cumsum[etype][g]; e < edge_cumsum[etype][g + 1]; ++e) {
        // TODO(mufei): Should use array operations to implement this.
        result_src.push_back(edges_src_data[e] - vertex_cumsum[src_vtype][g]);
        result_dst.push_back(edges_dst_data[e] - vertex_cumsum[dst_vtype][g]);
      }
      HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
334
335
336
337
338
          (src_vtype == dst_vtype) ? 1 : 2,
          vertex_sizes_data[src_vtype * batch_size + g],
          vertex_sizes_data[dst_vtype * batch_size + g],
          aten::VecToIdArray(result_src, sizeof(IdType) * 8),
          aten::VecToIdArray(result_dst, sizeof(IdType) * 8));
339
340
341
342
343
      rel_graphs[g].push_back(rgptr);
    }
  }

  std::vector<HeteroGraphPtr> rst;
344
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
345
  for (uint64_t g = 0; g < batch_size; ++g) {
346
347
348
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
349
350
351
352
  }
  return rst;
}

353
354
355
356
357
358
template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int32_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int64_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

359
}  // namespace dgl