union_partition.cc 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*!
 *  Copyright (c) 2020 by Contributors
 * \file graph/transform/union_partition.cc
 * \brief Functions for partition, union multiple graphs.
 */
#include "../heterograph.h"
using namespace dgl::runtime;

namespace dgl {

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
HeteroGraphPtr DisjointUnionHeteroGraph2(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list is empty";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    uint64_t src_offset = 0, dst_offset = 0;
    HeteroGraphPtr rgptr = nullptr;

    // ALL = CSC | CSR | COO
    dgl_format_code_t format = (1 << (SparseFormat2Code(SparseFormat::kCOO)-1)) |
                              (1 << (SparseFormat2Code(SparseFormat::kCSR)-1)) |
                              (1 << (SparseFormat2Code(SparseFormat::kCSC)-1));
    // do some preprocess
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      const std::string restrict_format = cg->GetRelationGraph(etype)->GetRestrictFormat();
      const SparseFormat curr_format = ParseSparseFormat(restrict_format);

      if (curr_format == SparseFormat::kCOO ||
          curr_format == SparseFormat::kCSR ||
          curr_format == SparseFormat::kCSC)
        format &=(1 << (SparseFormat2Code(curr_format)-1));

      // Update offsets
      src_offset += cg->NumVertices(src_vtype);
      dst_offset += cg->NumVertices(dst_vtype);
    }
    CHECK_GT(format, 0) << "The conjunction of restrict_format of the relation graphs under " <<
      etype << "should not be None.";

    // prefer COO
    if (FORMAT_HAS_COO(format)) {
      std::vector<aten::COOMatrix> coos;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::COOMatrix coo = cg->GetCOOMatrix(etype);
        coos.push_back(coo);
      }

      aten::COOMatrix res = aten::DisjointUnionCoo(coos);

      rgptr = UnitGraph::CreateFromCOO(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    } else if (FORMAT_HAS_CSR(format)) {
      std::vector<aten::CSRMatrix> csrs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csr = cg->GetCSRMatrix(etype);
        csrs.push_back(csr);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(csrs);

      rgptr = UnitGraph::CreateFromCSR(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    } else if (FORMAT_HAS_CSC(format)) {
      std::vector<aten::CSRMatrix> cscs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csc = cg->GetCSCMatrix(etype);
        cscs.push_back(csc);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(cscs);
      rgptr = UnitGraph::CreateFromCSC(
        (src_vtype == dst_vtype) ? 1 : 2, res,
        SparseFormat::kAny);
    }
    rel_graphs[etype] = rgptr;
    num_nodes_per_type[src_vtype] = src_offset;
    num_nodes_per_type[dst_vtype] = dst_offset;
  }

  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
}

std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes2(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  CHECK_EQ(vertex_sizes->dtype.bits, 64) << "dtype of vertex_sizes should be int64";
  CHECK_EQ(edge_sizes->dtype.bits, 64) << "dtype of edge_sizes should be int64";
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;

  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
  auto format = batched_graph->GetRelationGraph(0)->GetFormatInUse();
  auto restrict_format = batched_graph->GetRelationGraph(0)->GetRestrictFormat();

  if (FORMAT_HAS_COO(format)) {
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::COOMatrix coo = batched_graph->GetCOOMatrix(etype);
      auto res = aten::DisjointPartitionCooBySizes(coo,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
          (src_vtype == dst_vtype) ? 1 : 2, res[g],
          ParseSparseFormat(restrict_format));

        rel_graphs[g].push_back(rgptr);
      }
    }
  } else if (FORMAT_HAS_CSR(format)) {
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::CSRMatrix csr = batched_graph->GetCSRMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csr,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSR(
          (src_vtype == dst_vtype) ? 1 : 2, res[g],
          ParseSparseFormat(restrict_format));

        rel_graphs[g].push_back(rgptr);
      }
    }
  } else if (FORMAT_HAS_CSC(format)) {
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::CSRMatrix csc = batched_graph->GetCSCMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csc,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[dst_vtype],
                                                   vertex_cumsum[src_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSC(
          (src_vtype == dst_vtype) ? 1 : 2, res[g],
          SparseFormat::kAny);

        rel_graphs[g].push_back(rgptr);
      }
    }
  }

  std::vector<HeteroGraphPtr> rst;
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
  for (uint64_t g = 0; g < batch_size; ++g) {
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
  }
  return rst;
}

214
template <class IdType>
215
216
217
218
HeteroGraphPtr DisjointUnionHeteroGraph(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list is empty";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
219
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);
220
221
222
223
224
225

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
226
227
    IdType src_offset = 0, dst_offset = 0;
    std::vector<IdType> result_src, result_dst;
228
229
230
231
232
233

    // Loop over all graphs
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      EdgeArray edges = cg->Edges(etype);
      size_t num_edges = cg->NumEdges(etype);
234
235
      const IdType* edges_src_data = static_cast<const IdType*>(edges.src->data);
      const IdType* edges_dst_data = static_cast<const IdType*>(edges.dst->data);
236
237
238
239
240
241
242
243
244
245
246
247

      // Loop over all edges
      for (size_t j = 0; j < num_edges; ++j) {
        // TODO(mufei): Should use array operations to implement this.
        result_src.push_back(edges_src_data[j] + src_offset);
        result_dst.push_back(edges_dst_data[j] + dst_offset);
      }
      // Update offsets
      src_offset += cg->NumVertices(src_vtype);
      dst_offset += cg->NumVertices(dst_vtype);
    }
    HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
248
249
250
        (src_vtype == dst_vtype) ? 1 : 2, src_offset, dst_offset,
        aten::VecToIdArray(result_src, sizeof(IdType) * 8),
        aten::VecToIdArray(result_dst, sizeof(IdType) * 8));
251
    rel_graphs[etype] = rgptr;
252
253
    num_nodes_per_type[src_vtype] = src_offset;
    num_nodes_per_type[dst_vtype] = dst_offset;
254
  }
255
  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
256
257
}

258
259
260
261
262
263
264
template HeteroGraphPtr DisjointUnionHeteroGraph<int32_t>(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs);

template HeteroGraphPtr DisjointUnionHeteroGraph<int64_t>(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs);

template <class IdType>
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;
  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    EdgeArray edges = batched_graph->Edges(etype);
314
315
    const IdType* edges_src_data = static_cast<const IdType*>(edges.src->data);
    const IdType* edges_dst_data = static_cast<const IdType*>(edges.dst->data);
316
317
    // Loop over all graphs to be unbatched
    for (uint64_t g = 0; g < batch_size; ++g) {
318
      std::vector<IdType> result_src, result_dst;
319
320
321
322
323
324
325
      // Loop over the chunk of edges for the specified graph and edge type
      for (uint64_t e = edge_cumsum[etype][g]; e < edge_cumsum[etype][g + 1]; ++e) {
        // TODO(mufei): Should use array operations to implement this.
        result_src.push_back(edges_src_data[e] - vertex_cumsum[src_vtype][g]);
        result_dst.push_back(edges_dst_data[e] - vertex_cumsum[dst_vtype][g]);
      }
      HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
326
327
328
329
330
          (src_vtype == dst_vtype) ? 1 : 2,
          vertex_sizes_data[src_vtype * batch_size + g],
          vertex_sizes_data[dst_vtype * batch_size + g],
          aten::VecToIdArray(result_src, sizeof(IdType) * 8),
          aten::VecToIdArray(result_dst, sizeof(IdType) * 8));
331
332
333
334
335
      rel_graphs[g].push_back(rgptr);
    }
  }

  std::vector<HeteroGraphPtr> rst;
336
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
337
  for (uint64_t g = 0; g < batch_size; ++g) {
338
339
340
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
341
342
343
344
  }
  return rst;
}

345
346
347
348
349
350
template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int32_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int64_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

351
}  // namespace dgl